|
--- |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
- en |
|
library_name: transformers |
|
tags: |
|
- qihoo360 |
|
- 奇虎360 |
|
- zhinao |
|
- 360Zhinao |
|
- pretrain |
|
--- |
|
|
|
<div align="center"> |
|
<h1> |
|
360智脑 |
|
</h1> |
|
</div> |
|
<div align="center"> |
|
🤗 <a href="https://huggingface.co/qihoo360">Hugging Face</a>   |    |
|
🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |    |
|
💬 <a href="./assets/WeChat.png">WeChat (微信)</a>   |
|
</div> |
|
<br> |
|
<p align="center"> |
|
欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。 |
|
</p> |
|
|
|
<br> |
|
|
|
# 模型介绍 |
|
🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型: |
|
- **360Zhinao-7B-Base** |
|
- **360Zhinao-7B-Chat-4K** |
|
- **360Zhinao-7B-Chat-32K** |
|
- **360Zhinao-7B-Chat-360K** |
|
|
|
360智脑大模型特点如下: |
|
- **基础模型**:采用 3.4 万亿 Tokens 的高质量语料库训练,以中文、英文、代码为主,在相关基准评测中,同尺寸有竞争力。 |
|
- **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。据了解,360K(约50万字)是当前国产开源模型文本长度最长的。 |
|
|
|
<br> |
|
|
|
# 更新信息 |
|
- [2024.04.12] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。 |
|
|
|
<br> |
|
|
|
# 目录 |
|
- [下载地址](#下载地址) |
|
- [模型评估](#模型评估) |
|
- [快速开始](#快速开始) |
|
- [模型推理](#模型推理) |
|
- [模型微调](#模型微调) |
|
- [许可证](#许可证) |
|
|
|
<br> |
|
|
|
# 下载地址 |
|
本次发布版本和下载链接见下表: |
|
| Size | Model | BF16 | Int4| |
|
|:-:|-|:-:|:-:| |
|
| 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | | |
|
| 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> | |
|
| 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> | |
|
| 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> | |
|
|
|
<br> |
|
|
|
# 模型评估 |
|
|
|
## 基础模型 |
|
我们在OpenCompass的主流评测数据集上验证了我们的模型性能,包括C-Eval、AGIEval、MMLU、CMMLU、HellaSwag、MATH、GSM8K、HumanEval、MBPP、BBH、LAMBADA,考察的能力包括自然语言理解、知识、数学计算和推理、代码生成、逻辑推理等。 |
|
|
|
|
|
| <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA | |
|
|:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:| |
|
| Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 | |
|
| Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 | |
|
| ChatGLM3-6B | **58.67** | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | **57.2** | **66.2** | 77.1 | |
|
| DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 | |
|
| InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | **70.6** | 41.5 | 42.4 | 64.4 | 72.1 | |
|
| InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 | |
|
| LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 | |
|
| LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 | |
|
| Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 | |
|
| MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 | |
|
| Qwen1.5-7B | 55.12 | 73.57 | **50.8** | 62.15 | 71.84 | 72.62 | **20.36** | 54.36 | **53.05** | 36.8 | 40.01 | 70.74 | |
|
| Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 | |
|
| XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 | |
|
| Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 | |
|
| **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** | |
|
|
|
以上结果,在官方[Opencompass](https://rank.opencompass.org.cn/leaderboard-llm)上可查询或可复现。 |
|
|
|
## Chat模型 |
|
|
|
4K和32K的Chat模型使用相同的4K SFT数据训练。 |
|
|
|
我们采用了两阶段的方式训练长文本模型. |
|
|
|
**第一阶段**:我们增大RoPE base,将上下文长度扩展至32K训练: |
|
- 首先,对基础模型进行了约5B tokens的32K窗口继续预训练。 |
|
- 接着,SFT阶段使用了多种形式和来源的长文本数据,包括高质量的人工标注32K长文本数据。 |
|
|
|
**第二阶段**:我们将上下文长度扩展至360K进行训练,使用数据如下: |
|
- 少量高质量人工标注数据。 |
|
- 由于带有标注的超长文本数据的稀缺性,我们构造了多种形式的合成数据: |
|
- 多文档问答:类似[Ziya-Reader](https://arxiv.org/abs/2311.09198),我们基于360自有数据构造了多种类型的多文档问答数据,同时将问答改为多轮,显著提升长文本的训练效率。 |
|
- 单文档问答:类似[LLama2 Long](https://arxiv.org/abs/2309.16039),我们构造了基于超长文本各个片段的多轮问答数据。 |
|
|
|
我们在多种长度和多种任务的评测Benchmark上验证不同版本模型的性能。 |
|
|
|
- ### 360Zhinao-7B-Chat-32K模型长文本能力评测 |
|
|
|
|
|
我们使用LongBench验证长文本效果。[LongBench](https://github.com/THUDM/LongBench)是第一个多任务、中英双语、针对大语言模型长文本理解能力的评测基准。LongBench由六大类、二十一个不同的任务组成,我们选择其中与中文长文本应用最密切相关的中文单文档问答、多文档问答、摘要、Few-shot等任务进行评测。 |
|
|
|
| Model | Avg | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 | |
|
| :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:| |
|
| GPT-3.5-Turbo-16k | 37.84 | 61.2 | 28.7 | 16 | 29.2 | 54.1 | |
|
| ChatGLM2-6B-32k | 37.16 | 51.6 | 37.6 | 16.2 | 27.7 | 52.7 | |
|
| ChatGLM3-6B-32k | 44.62 | **62.3** | 44.8 | 17.8 | 42 | 56.2 | |
|
| InternLM2-Chat-7B | 42.20 | 56.65 | 29.15 | **17.99** | 43.5 | **63.72** | |
|
| Qwen1.5-Chat-7B | 36.75 | 52.85 | 30.08 | 14.28 | 32 | 54.55 | |
|
| Qwen1.5-Chat-14B | 39.80 | 60.39 | 27.99 | 14.77 | 37 | 58.87 | |
|
| 360Zhinao-7B-Chat-32K | **45.18** | 57.18 | **48.06** | 15.03 | **44** | 61.64 | |
|
|
|
- ### 360Zhinao-7B-Chat-360K“大海捞针”测试 |
|
|
|
大海捞针测试([NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))是将关键信息插入一段长文本的不同位置,再对该关键信息提问,从而测试大模型的长文本能力的一种方法。 |
|
|
|
360Zhinao-7B-Chat-360K在中英文大海捞针中都能达到98%以上的准确率。 |
|
|
|
- 英文"大海捞针"(和[NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack)相同) |
|
|
|
<p align="center"> |
|
<img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" /> |
|
<p> |
|
|
|
**针**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day. |
|
|
|
**提问**:What is the best thing to do in San Francisco? |
|
|
|
|
|
- 中文“大海捞针” |
|
|
|
<p align="center"> |
|
<img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" /> |
|
<p> |
|
|
|
我们仿照[SuperCLUE-200K测评基准](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw)构造了中文大海捞针: |
|
|
|
**海**:长篇小说。 |
|
|
|
**针**:王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之前到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。 |
|
|
|
**提问**:王莽在谁的手下工作? |
|
|
|
<br> |
|
|
|
# 快速开始 |
|
简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao-7B-Base和360Zhinao-7B-Chat |
|
|
|
## 依赖安装 |
|
- python 3.8 and above |
|
- pytorch 2.0 and above |
|
- transformers 4.37.2 and above |
|
- CUDA 11.4 and above are recommended. |
|
|
|
```shell |
|
pip install -r requirements.txt |
|
``` |
|
我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目) |
|
|
|
>flash-attn >= 2.3.6 |
|
```shell |
|
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6 |
|
``` |
|
|
|
|
|
## 🤗 Transformers |
|
### Base模型推理 |
|
|
|
此代码演示使用transformers快速使用360Zhinao-7B-Base模型进行推理 |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from transformers.generation import GenerationConfig |
|
|
|
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
device_map="auto", |
|
trust_remote_code=True) |
|
|
|
generation_config = GenerationConfig.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt') |
|
inputs = inputs.to(model.device) |
|
|
|
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config) |
|
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) |
|
``` |
|
|
|
### Chat模型推理 |
|
|
|
此代码演示使用transformers快速使用360Zhinao-7B-Chat-4K模型进行推理 |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from transformers.generation import GenerationConfig |
|
|
|
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
device_map="auto", |
|
trust_remote_code=True) |
|
|
|
generation_config = GenerationConfig.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
messages = [] |
|
#round-1 |
|
messages.append({"role": "user", "content": "介绍一下刘德华"}) |
|
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) |
|
messages.append({"role": "assistant", "content": response}) |
|
print(messages) |
|
|
|
#round-2 |
|
messages.append({"role": "user", "content": "他有什么代表作?"}) |
|
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) |
|
messages.append({"role": "assistant", "content": response}) |
|
print(messages) |
|
``` |
|
|
|
## 🤖 ModelScope |
|
### Base模型推理 |
|
|
|
此代码演示使用ModelScope快速使用360Zhinao-7B-Base模型进行推理 |
|
|
|
|
|
```python |
|
from modelscope import AutoModelForCausalLM, AutoTokenizer |
|
from modelscope import GenerationConfig |
|
|
|
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
device_map="auto", |
|
trust_remote_code=True) |
|
|
|
generation_config = GenerationConfig.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt') |
|
inputs = inputs.to(model.device) |
|
|
|
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config) |
|
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) |
|
``` |
|
|
|
### Chat模型推理 |
|
|
|
此代码演示使用ModelScope快速使用360Zhinao-7B-Chat-4K模型进行推理 |
|
```python |
|
from modelscope import AutoModelForCausalLM, AutoTokenizer |
|
from modelscope import GenerationConfig |
|
|
|
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
device_map="auto", |
|
trust_remote_code=True) |
|
|
|
generation_config = GenerationConfig.from_pretrained( |
|
MODEL_NAME_OR_PATH, |
|
trust_remote_code=True) |
|
|
|
messages = [] |
|
#round-1 |
|
messages.append({"role": "user", "content": "介绍一下刘德华"}) |
|
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) |
|
messages.append({"role": "assistant", "content": response}) |
|
print(messages) |
|
|
|
#round-2 |
|
messages.append({"role": "user", "content": "他有什么代表作?"}) |
|
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config) |
|
messages.append({"role": "assistant", "content": response}) |
|
print(messages) |
|
``` |
|
|
|
## 终端 Demo |
|
可使用终端交互实现快速体验 |
|
```shell |
|
python cli_demo.py |
|
``` |
|
<p align="center"> |
|
<img src="assets/cli_demo.gif" width="600" /> |
|
<p> |
|
|
|
## 网页 Demo |
|
也可使用网页交互实现快速体验 |
|
```shell |
|
streamlit run web_demo.py |
|
``` |
|
<p align="center"> |
|
<img src="assets/web_demo.gif" width="600" /> |
|
<p> |
|
|
|
## API Demo |
|
启动命令 |
|
```shell |
|
python openai_api.py |
|
``` |
|
|
|
请求参数 |
|
```shell |
|
curl 'http://localhost:8360/v1/chat/completions' \ |
|
-H 'Content-Type: application/json' \ |
|
-d '{ |
|
"max_new_tokens": 200, |
|
"do_sample": true, |
|
"top_k": 0, |
|
"top_p": 0.8, |
|
"temperature": 1.0, |
|
"repetition_penalty": 1.0, |
|
"messages": [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": "你好"} |
|
] |
|
}' |
|
``` |
|
|
|
<br> |
|
|
|
# 模型推理 |
|
## 模型量化 |
|
我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。 |
|
|
|
## 模型部署 |
|
### vLLM安装环境 |
|
如希望部署及加速推理,我们建议你使用 `vLLM==0.3.3`。 |
|
|
|
如果你使用**CUDA 12.1和PyTorch 2.1**,可以直接使用以下命令安装vLLM。 |
|
```shell |
|
pip install vllm==0.3.3 |
|
``` |
|
|
|
否则请参考vLLM官方的[安装说明](https://docs.vllm.ai/en/latest/getting_started/installation.html)。 |
|
|
|
>安装完成后,还需要以下操作~ |
|
1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。 |
|
2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。 |
|
3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码 |
|
|
|
```shell |
|
"ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"), |
|
``` |
|
|
|
### vLLM服务启动 |
|
|
|
启动服务 |
|
```shell |
|
python -m vllm.entrypoints.openai.api_server \ |
|
--served-model-name 360Zhinao-7B-Chat-4K \ |
|
--model qihoo360/360Zhinao-7B-Chat-4K \ |
|
--trust-remote-code \ |
|
--tensor-parallel-size 1 \ |
|
--max-model-len 4096 \ |
|
--host 0.0.0.0 \ |
|
--port 8360 |
|
``` |
|
|
|
使用curl请求服务 |
|
```shell |
|
curl http://localhost:8360/v1/chat/completions \ |
|
-H "Content-Type: application/json" \ |
|
-d '{ |
|
"model": "360Zhinao-7B-Chat-4K", |
|
"max_tokens": 200, |
|
"top_k": -1, |
|
"top_p": 0.8, |
|
"temperature": 1.0, |
|
"presence_penalty": 0.0, |
|
"frequency_penalty": 0.0, |
|
"messages": [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": "你好"} |
|
], |
|
"stop": [ |
|
"<eod>", |
|
"<|im_end|>", |
|
"<|im_start|>" |
|
] |
|
}' |
|
``` |
|
使用python请求服务 |
|
```python |
|
from openai import OpenAI |
|
# Set OpenAI's API key and API base to use vLLM's API server. |
|
openai_api_key = "EMPTY" |
|
openai_api_base = "http://localhost:8360/v1" |
|
|
|
client = OpenAI( |
|
api_key=openai_api_key, |
|
base_url=openai_api_base, |
|
) |
|
|
|
chat_response = client.chat.completions.create( |
|
model="360Zhinao-7B-Chat-4K", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": "你好"}, |
|
], |
|
stop=[ |
|
"<eod>", |
|
"<|im_end|>", |
|
"<|im_start|>" |
|
], |
|
presence_penalty=0.0, |
|
frequency_penalty=0.0 |
|
) |
|
print("Chat response:", chat_response) |
|
``` |
|
|
|
> 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。 |
|
|
|
<br> |
|
|
|
# 模型微调 |
|
## 训练数据 |
|
|
|
我们提供了微调训练样例数据 data/test.json,该样例数据是从 [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) 采样出 1 万条,并且做了格式转换。 |
|
|
|
数据格式: |
|
```json |
|
[ |
|
{ |
|
"id": 1, |
|
"conversations": [ |
|
{ |
|
"from": "system", |
|
"value": "You are a helpful assistant." |
|
}, |
|
{ |
|
"from": "user", |
|
"value": "您好啊" |
|
}, |
|
{ |
|
"from": "assistant", |
|
"value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。" |
|
} |
|
] |
|
} |
|
] |
|
``` |
|
|
|
## 微调训练 |
|
训练脚本如下: |
|
```shell |
|
set -x |
|
|
|
HOSTFILE=hostfile |
|
DS_CONFIG=./finetune/ds_config_zero2.json |
|
|
|
# PARAMS |
|
LR=5e-6 |
|
EPOCHS=3 |
|
MAX_LEN=4096 |
|
BATCH_SIZE=4 |
|
NUM_NODES=1 |
|
NUM_GPUS=8 |
|
MASTER_PORT=29500 |
|
|
|
IS_CONCAT=False # 是否数据拼接到最大长度(MAX_LEN) |
|
|
|
DATA_PATH="./data/training_data_sample.json" |
|
MODEL_PATH="qihoo360/360Zhinao-7B-Base" |
|
OUTPUT_DIR="./outputs/" |
|
|
|
deepspeed --hostfile ${HOSTFILE} \ |
|
--master_port ${MASTER_PORT} \ |
|
--num_nodes ${NUM_NODES} \ |
|
--num_gpus ${NUM_GPUS} \ |
|
finetune.py \ |
|
--report_to "tensorboard" \ |
|
--data_path ${DATA_PATH} \ |
|
--model_name_or_path ${MODEL_PATH} \ |
|
--output_dir ${OUTPUT_DIR} \ |
|
--model_max_length ${MAX_LEN} \ |
|
--num_train_epochs ${EPOCHS} \ |
|
--per_device_train_batch_size ${BATCH_SIZE} \ |
|
--gradient_accumulation_steps 1 \ |
|
--save_strategy steps \ |
|
--save_steps 200 \ |
|
--learning_rate ${LR} \ |
|
--lr_scheduler_type cosine \ |
|
--adam_beta1 0.9 \ |
|
--adam_beta2 0.95 \ |
|
--adam_epsilon 1e-8 \ |
|
--max_grad_norm 1.0 \ |
|
--weight_decay 0.1 \ |
|
--warmup_ratio 0.01 \ |
|
--gradient_checkpointing True \ |
|
--bf16 True \ |
|
--tf32 True \ |
|
--deepspeed ${DS_CONFIG} \ |
|
--is_concat ${IS_CONCAT} \ |
|
--logging_steps 1 \ |
|
--log_on_each_node False |
|
``` |
|
```shell |
|
bash finetune/ds_finetune.sh |
|
``` |
|
- 可通过配置hostfile,实现单机、多机训练。 |
|
- 可通过配置ds_config,实现zero2、zero3。 |
|
- 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。 |
|
- 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。 |
|
|
|
<br> |
|
|
|
# 许可证 |
|
|
|
本仓库源码遵循开源许可证Apache 2.0。 |
|
|
|
360智脑开源模型支持商用,若需将本模型及衍生模型用于商业用途,请通过邮箱([email protected])联系进行申请, 具体许可协议请见[《360智脑开源模型许可证》](https://github.com/Qihoo360/360zhinao/blob/main/360%E6%99%BA%E8%84%91%E5%BC%80%E6%BA%90%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E8%AF%81.txt)。 |
|
|