YOLOv8-Detection: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge by Ultralytics

Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of YOLOv8-Detection found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YOLOv8-N
    • Input resolution: 640x640
    • Number of parameters: 3.18M
    • Model size: 12.2 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
YOLOv8-Detection Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 5.164 ms 0 - 17 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 5.053 ms 5 - 7 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 6.183 ms 5 - 39 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 3.706 ms 0 - 47 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 3.46 ms 5 - 20 MB FP16 NPU --
YOLOv8-Detection Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 4.371 ms 5 - 64 MB FP16 NPU --
YOLOv8-Detection Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 3.686 ms 0 - 44 MB FP16 NPU --
YOLOv8-Detection Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 3.635 ms 5 - 56 MB FP16 NPU --
YOLOv8-Detection Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 3.347 ms 5 - 57 MB FP16 NPU --
YOLOv8-Detection SA7255P ADP SA7255P TFLITE 71.655 ms 0 - 35 MB FP16 NPU --
YOLOv8-Detection SA7255P ADP SA7255P QNN 70.864 ms 1 - 7 MB FP16 NPU --
YOLOv8-Detection SA8255 (Proxy) SA8255P Proxy TFLITE 5.167 ms 0 - 16 MB FP16 NPU --
YOLOv8-Detection SA8255 (Proxy) SA8255P Proxy QNN 5.013 ms 5 - 7 MB FP16 NPU --
YOLOv8-Detection SA8295P ADP SA8295P TFLITE 9.939 ms 0 - 28 MB FP16 NPU --
YOLOv8-Detection SA8650 (Proxy) SA8650P Proxy TFLITE 5.173 ms 0 - 19 MB FP16 NPU --
YOLOv8-Detection SA8650 (Proxy) SA8650P Proxy QNN 4.998 ms 5 - 7 MB FP16 NPU --
YOLOv8-Detection SA8775P ADP SA8775P TFLITE 8.129 ms 0 - 35 MB FP16 NPU --
YOLOv8-Detection SA8775P ADP SA8775P QNN 7.974 ms 0 - 8 MB FP16 NPU --
YOLOv8-Detection QCS8275 (Proxy) QCS8275 Proxy TFLITE 71.655 ms 0 - 35 MB FP16 NPU --
YOLOv8-Detection QCS8275 (Proxy) QCS8275 Proxy QNN 70.864 ms 1 - 7 MB FP16 NPU --
YOLOv8-Detection QCS8550 (Proxy) QCS8550 Proxy TFLITE 5.145 ms 0 - 17 MB FP16 NPU --
YOLOv8-Detection QCS8550 (Proxy) QCS8550 Proxy QNN 5.0 ms 5 - 7 MB FP16 NPU --
YOLOv8-Detection QCS9075 (Proxy) QCS9075 Proxy TFLITE 8.129 ms 0 - 35 MB FP16 NPU --
YOLOv8-Detection QCS9075 (Proxy) QCS9075 Proxy QNN 7.974 ms 0 - 8 MB FP16 NPU --
YOLOv8-Detection QCS8450 (Proxy) QCS8450 Proxy TFLITE 8.597 ms 0 - 31 MB FP16 NPU --
YOLOv8-Detection QCS8450 (Proxy) QCS8450 Proxy QNN 7.603 ms 5 - 40 MB FP16 NPU --
YOLOv8-Detection Snapdragon X Elite CRD Snapdragon® X Elite QNN 5.419 ms 5 - 5 MB FP16 NPU --
YOLOv8-Detection Snapdragon X Elite CRD Snapdragon® X Elite ONNX 6.696 ms 5 - 5 MB FP16 NPU --

License

  • The license for the original implementation of YOLOv8-Detection can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support object-detection models for pytorch library.