srikris commited on
Commit
21d9242
1 Parent(s): d4a490a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -12
README.md CHANGED
@@ -10,13 +10,13 @@ tags:
10
 
11
  ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)
12
 
13
- # Yolo-v8-Detection: Optimized for Mobile Deployment
14
  ## Real-time object detection optimized for mobile and edge
15
 
16
- YoloV8 is a machine learning model that predicts bounding boxes and classes of objects in an image.
17
 
18
- This model is an implementation of Yolo-v8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).
19
- This repository provides scripts to run Yolo-v8-Detection on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/yolov8_det).
22
 
@@ -25,7 +25,7 @@ More details on model performance across various devices, can be found
25
 
26
  - **Model Type:** Object detection
27
  - **Model Stats:**
28
- - Model checkpoint: YoloV8-N
29
  - Input resolution: 640x640
30
  - Number of parameters: 3.18M
31
  - Model size: 12.2 MB
@@ -33,8 +33,8 @@ More details on model performance across various devices, can be found
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 9.251 ms | 0 - 3 MB | FP16 | NPU | [Yolo-v8-Detection.tflite](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.tflite)
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.043 ms | 5 - 19 MB | FP16 | NPU | [Yolo-v8-Detection.so](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.so)
38
 
39
 
40
  ## Installation
@@ -93,14 +93,14 @@ python -m qai_hub_models.models.yolov8_det.export
93
  ```
94
 
95
  ```
96
- Profile Job summary of Yolo-v8-Detection
97
  --------------------------------------------------
98
  Device: Samsung Galaxy S23 Ultra (13)
99
  Estimated Inference Time: 9.25 ms
100
  Estimated Peak Memory Range: 0.22-2.53 MB
101
  Compute Units: NPU (300) | Total (300)
102
 
103
- Profile Job summary of Yolo-v8-Detection
104
  --------------------------------------------------
105
  Device: Samsung Galaxy S23 Ultra (13)
106
  Estimated Inference Time: 7.04 ms
@@ -218,13 +218,12 @@ provides instructions on how to use the `.so` shared library in an Android appl
218
 
219
 
220
  ## View on Qualcomm® AI Hub
221
- Get more details on Yolo-v8-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_det).
222
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
223
 
224
  ## License
225
- - The license for the original implementation of Yolo-v8-Detection can be found
226
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
227
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
228
 
229
  ## References
230
  * [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
 
10
 
11
  ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)
12
 
13
+ # YOLOv8-Detection: Optimized for Mobile Deployment
14
  ## Real-time object detection optimized for mobile and edge
15
 
16
+ Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.
17
 
18
+ This model is an implementation of YOLOv8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).
19
+ This repository provides scripts to run YOLOv8-Detection on Qualcomm® devices.
20
  More details on model performance across various devices, can be found
21
  [here](https://aihub.qualcomm.com/models/yolov8_det).
22
 
 
25
 
26
  - **Model Type:** Object detection
27
  - **Model Stats:**
28
+ - Model checkpoint: YOLOv8-N
29
  - Input resolution: 640x640
30
  - Number of parameters: 3.18M
31
  - Model size: 12.2 MB
 
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 9.251 ms | 0 - 3 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.tflite)
37
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.043 ms | 5 - 19 MB | FP16 | NPU | [YOLOv8-Detection.so](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.so)
38
 
39
 
40
  ## Installation
 
93
  ```
94
 
95
  ```
96
+ Profile Job summary of YOLOv8-Detection
97
  --------------------------------------------------
98
  Device: Samsung Galaxy S23 Ultra (13)
99
  Estimated Inference Time: 9.25 ms
100
  Estimated Peak Memory Range: 0.22-2.53 MB
101
  Compute Units: NPU (300) | Total (300)
102
 
103
+ Profile Job summary of YOLOv8-Detection
104
  --------------------------------------------------
105
  Device: Samsung Galaxy S23 Ultra (13)
106
  Estimated Inference Time: 7.04 ms
 
218
 
219
 
220
  ## View on Qualcomm® AI Hub
221
+ Get more details on YOLOv8-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_det).
222
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
223
 
224
  ## License
225
+ - The license for the original implementation of YOLOv8-Detection can be found
226
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
 
227
 
228
  ## References
229
  * [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)