Update README.md
Browse files
README.md
CHANGED
@@ -10,13 +10,13 @@ tags:
|
|
10 |
|
11 |
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)
|
12 |
|
13 |
-
#
|
14 |
## Real-time object detection optimized for mobile and edge
|
15 |
|
16 |
-
|
17 |
|
18 |
-
This model is an implementation of
|
19 |
-
This repository provides scripts to run
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov8_det).
|
22 |
|
@@ -25,7 +25,7 @@ More details on model performance across various devices, can be found
|
|
25 |
|
26 |
- **Model Type:** Object detection
|
27 |
- **Model Stats:**
|
28 |
-
- Model checkpoint:
|
29 |
- Input resolution: 640x640
|
30 |
- Number of parameters: 3.18M
|
31 |
- Model size: 12.2 MB
|
@@ -33,8 +33,8 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 9.251 ms | 0 - 3 MB | FP16 | NPU | [
|
37 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.043 ms | 5 - 19 MB | FP16 | NPU | [
|
38 |
|
39 |
|
40 |
## Installation
|
@@ -93,14 +93,14 @@ python -m qai_hub_models.models.yolov8_det.export
|
|
93 |
```
|
94 |
|
95 |
```
|
96 |
-
Profile Job summary of
|
97 |
--------------------------------------------------
|
98 |
Device: Samsung Galaxy S23 Ultra (13)
|
99 |
Estimated Inference Time: 9.25 ms
|
100 |
Estimated Peak Memory Range: 0.22-2.53 MB
|
101 |
Compute Units: NPU (300) | Total (300)
|
102 |
|
103 |
-
Profile Job summary of
|
104 |
--------------------------------------------------
|
105 |
Device: Samsung Galaxy S23 Ultra (13)
|
106 |
Estimated Inference Time: 7.04 ms
|
@@ -218,13 +218,12 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
218 |
|
219 |
|
220 |
## View on Qualcomm® AI Hub
|
221 |
-
Get more details on
|
222 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
223 |
|
224 |
## License
|
225 |
-
- The license for the original implementation of
|
226 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
227 |
-
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
|
228 |
|
229 |
## References
|
230 |
* [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
|
|
|
10 |
|
11 |
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)
|
12 |
|
13 |
+
# YOLOv8-Detection: Optimized for Mobile Deployment
|
14 |
## Real-time object detection optimized for mobile and edge
|
15 |
|
16 |
+
Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.
|
17 |
|
18 |
+
This model is an implementation of YOLOv8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).
|
19 |
+
This repository provides scripts to run YOLOv8-Detection on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/yolov8_det).
|
22 |
|
|
|
25 |
|
26 |
- **Model Type:** Object detection
|
27 |
- **Model Stats:**
|
28 |
+
- Model checkpoint: YOLOv8-N
|
29 |
- Input resolution: 640x640
|
30 |
- Number of parameters: 3.18M
|
31 |
- Model size: 12.2 MB
|
|
|
33 |
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 9.251 ms | 0 - 3 MB | FP16 | NPU | [YOLOv8-Detection.tflite](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.tflite)
|
37 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 7.043 ms | 5 - 19 MB | FP16 | NPU | [YOLOv8-Detection.so](https://huggingface.co/qualcomm/Yolo-v8-Detection/blob/main/Yolo-v8-Detection.so)
|
38 |
|
39 |
|
40 |
## Installation
|
|
|
93 |
```
|
94 |
|
95 |
```
|
96 |
+
Profile Job summary of YOLOv8-Detection
|
97 |
--------------------------------------------------
|
98 |
Device: Samsung Galaxy S23 Ultra (13)
|
99 |
Estimated Inference Time: 9.25 ms
|
100 |
Estimated Peak Memory Range: 0.22-2.53 MB
|
101 |
Compute Units: NPU (300) | Total (300)
|
102 |
|
103 |
+
Profile Job summary of YOLOv8-Detection
|
104 |
--------------------------------------------------
|
105 |
Device: Samsung Galaxy S23 Ultra (13)
|
106 |
Estimated Inference Time: 7.04 ms
|
|
|
218 |
|
219 |
|
220 |
## View on Qualcomm® AI Hub
|
221 |
+
Get more details on YOLOv8-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/yolov8_det).
|
222 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
223 |
|
224 |
## License
|
225 |
+
- The license for the original implementation of YOLOv8-Detection can be found
|
226 |
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
|
|
227 |
|
228 |
## References
|
229 |
* [Real-Time Flying Object Detection with YOLOv8](https://arxiv.org/abs/2305.09972)
|