Yolo-v7-Quantized: Optimized for Mobile Deployment

Quantized real-time object detection optimized for mobile and edge

YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.

This model is an implementation of Yolo-v7-Quantized found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YoloV7 Tiny
    • Input resolution: 640x640
    • Number of parameters: 6.24M
    • Model size: 6.23 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo-v7-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 4.48 ms 0 - 11 MB INT8 NPU --
Yolo-v7-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 5.432 ms 0 - 10 MB INT8 NPU --
Yolo-v7-Quantized Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 6.272 ms 0 - 51 MB INT8 NPU --
Yolo-v7-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 2.905 ms 0 - 45 MB INT8 NPU --
Yolo-v7-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 3.584 ms 1 - 58 MB INT8 NPU --
Yolo-v7-Quantized Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 4.207 ms 1 - 101 MB INT8 NPU --
Yolo-v7-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 2.99 ms 0 - 40 MB INT8 NPU --
Yolo-v7-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 3.157 ms 1 - 55 MB INT8 NPU --
Yolo-v7-Quantized Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 3.641 ms 1 - 93 MB INT8 NPU --
Yolo-v7-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 11.977 ms 0 - 54 MB INT8 NPU --
Yolo-v7-Quantized RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 14.834 ms 1 - 13 MB INT8 NPU --
Yolo-v7-Quantized RB5 (Proxy) QCS8250 Proxy TFLITE 56.215 ms 15 - 54 MB INT8 GPU --
Yolo-v7-Quantized QCS8550 (Proxy) QCS8550 Proxy TFLITE 4.477 ms 0 - 11 MB INT8 NPU --
Yolo-v7-Quantized QCS8550 (Proxy) QCS8550 Proxy QNN 4.431 ms 1 - 4 MB INT8 NPU --
Yolo-v7-Quantized SA7255P ADP SA7255P TFLITE 19.699 ms 0 - 32 MB INT8 NPU --
Yolo-v7-Quantized SA7255P ADP SA7255P QNN 20.071 ms 1 - 10 MB INT8 NPU --
Yolo-v7-Quantized SA8255 (Proxy) SA8255P Proxy TFLITE 4.467 ms 0 - 11 MB INT8 NPU --
Yolo-v7-Quantized SA8255 (Proxy) SA8255P Proxy QNN 4.448 ms 1 - 4 MB INT8 NPU --
Yolo-v7-Quantized SA8295P ADP SA8295P TFLITE 6.163 ms 0 - 41 MB INT8 NPU --
Yolo-v7-Quantized SA8295P ADP SA8295P QNN 6.018 ms 1 - 15 MB INT8 NPU --
Yolo-v7-Quantized SA8650 (Proxy) SA8650P Proxy TFLITE 4.462 ms 0 - 11 MB INT8 NPU --
Yolo-v7-Quantized SA8650 (Proxy) SA8650P Proxy QNN 4.49 ms 1 - 4 MB INT8 NPU --
Yolo-v7-Quantized SA8775P ADP SA8775P TFLITE 6.197 ms 0 - 32 MB INT8 NPU --
Yolo-v7-Quantized SA8775P ADP SA8775P QNN 6.464 ms 1 - 11 MB INT8 NPU --
Yolo-v7-Quantized QCS8450 (Proxy) QCS8450 Proxy TFLITE 5.152 ms 0 - 48 MB INT8 NPU --
Yolo-v7-Quantized QCS8450 (Proxy) QCS8450 Proxy QNN 5.085 ms 1 - 62 MB INT8 NPU --
Yolo-v7-Quantized Snapdragon X Elite CRD Snapdragon® X Elite QNN 4.895 ms 1 - 1 MB INT8 NPU --
Yolo-v7-Quantized Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.031 ms 8 - 8 MB INT8 NPU --

License

  • The license for the original implementation of Yolo-v7-Quantized can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support pytorch models for this pipeline type.