Edit model card

doc2query-viT5

This is a doc2query model based on viT5

It can be used for:

  • Document expansion: You generate for your paragraphs 20-40 queries and index the paragraphs and the generates queries in a standard BM25 index like Elasticsearch, OpenSearch, or Lucene. The generated queries help to close the lexical gap of lexical search, as the generate queries contain synonyms. Further, it re-weights words giving important words a higher weight even if they appear seldomn in a paragraph.
  • Domain Specific Training Data Generation: It can be used to generate training data to learn an embedding model.

Usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model_name = 'r1ck/doc2query-viT5'
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

text = "Chiến tranh Lạnh (1947-1991, tiếng Anh: Cold War) là chỉ đến sự căng thẳng địa chính trị và xung đột ý thức hệ đỉnh điểm giữa hai siêu cường (đứng đầu và đại diện hai khối đối lập): Hoa Kỳ (chủ nghĩa tư bản) và Liên Xô (chủ nghĩa xã hội)."


def create_queries(para):
    input_ids = tokenizer.encode(para, return_tensors='pt')
    with torch.no_grad():
        # Here we use top_k / top_k random sampling. It generates more diverse queries, but of lower quality
        sampling_outputs = model.generate(
            input_ids=input_ids,
            max_length=64,
            do_sample=True,
            top_p=0.95,
            top_k=10, 
            num_return_sequences=5
            )
        
        # Here we use Beam-search. It generates better quality queries, but with less diversity
        beam_outputs = model.generate(
            input_ids=input_ids, 
            max_length=64, 
            num_beams=5, 
            no_repeat_ngram_size=2, 
            num_return_sequences=5, 
            early_stopping=True
        )


    print("Paragraph:")
    print(para)
    
    print("\nBeam Outputs:")
    for i in range(len(beam_outputs)):
        query = tokenizer.decode(beam_outputs[i], skip_special_tokens=True)
        print(f'{i + 1}: {query}')

    print("\nSampling Outputs:")
    for i in range(len(sampling_outputs)):
        query = tokenizer.decode(sampling_outputs[i], skip_special_tokens=True)
        print(f'{i + 1}: {query}')

create_queries(text)

Note: model.generate() is non-deterministic for top_k/top_n sampling. It produces different queries each time you run it.

Training

This model fine-tuned VietAI/vit5-base on 30k vietnamese passage-question pairs

Downloads last month
4
Safetensors
Model size
226M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.