results

This model is a fine-tuned version of google/vit-base-patch32-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5006
  • Accuracy: 0.4813

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0441 1.0 40 2.0365 0.25
1.9219 2.0 80 1.9451 0.3063
1.7429 3.0 120 1.8213 0.375
1.5854 4.0 160 1.7126 0.4188
1.4913 5.0 200 1.6547 0.4688
1.3673 6.0 240 1.6200 0.4813
1.2713 7.0 280 1.5822 0.475
1.1907 8.0 320 1.5639 0.4875
1.0516 9.0 360 1.5441 0.4875
1.0037 10.0 400 1.5285 0.4813
0.9538 11.0 440 1.5229 0.4813
0.8983 12.0 480 1.5100 0.4813
0.8616 13.0 520 1.5016 0.4938
0.8417 14.0 560 1.5024 0.4813
0.8078 15.0 600 1.5006 0.4813

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
192
Safetensors
Model size
87.5M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for raffaelsiregar/rgai-emotions-classification

Finetuned
(9)
this model

Evaluation results