|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model_index: |
|
- name: ner_conll2003 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
args: conll2003 |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9772880710440217 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_conll2003 |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1495 |
|
- Precision: 0.8985 |
|
- Recall: 0.9130 |
|
- F1: 0.9057 |
|
- Accuracy: 0.9773 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.423 | 1.0 | 877 | 0.0656 | 0.9158 | 0.9268 | 0.9213 | 0.9818 | |
|
| 0.0575 | 2.0 | 1754 | 0.0574 | 0.9285 | 0.9445 | 0.9364 | 0.9847 | |
|
| 0.0295 | 3.0 | 2631 | 0.0631 | 0.9414 | 0.9456 | 0.9435 | 0.9859 | |
|
| 0.0155 | 4.0 | 3508 | 0.0680 | 0.9395 | 0.9467 | 0.9431 | 0.9860 | |
|
| 0.0097 | 5.0 | 4385 | 0.0694 | 0.9385 | 0.9513 | 0.9449 | 0.9863 | |
|
| 0.0059 | 6.0 | 5262 | 0.0743 | 0.9363 | 0.9471 | 0.9416 | 0.9860 | |
|
| 0.0041 | 7.0 | 6139 | 0.0803 | 0.9371 | 0.9518 | 0.9444 | 0.9862 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.1 |
|
- Pytorch 1.9.0+cu102 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.2 |
|
|