|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model_index: |
|
- name: ner_conll2003 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
args: conll2003 |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9769764744577354 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_conll2003 |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1551 |
|
- Precision: 0.8966 |
|
- Recall: 0.9065 |
|
- F1: 0.9015 |
|
- Accuracy: 0.9770 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3068 | 1.0 | 877 | 0.0589 | 0.9200 | 0.9388 | 0.9293 | 0.9837 | |
|
| 0.0464 | 2.0 | 1754 | 0.0562 | 0.9298 | 0.9453 | 0.9375 | 0.9851 | |
|
| 0.0233 | 3.0 | 2631 | 0.0559 | 0.9408 | 0.9472 | 0.9440 | 0.9865 | |
|
| 0.0116 | 4.0 | 3508 | 0.0581 | 0.9421 | 0.9523 | 0.9472 | 0.9871 | |
|
| 0.0068 | 5.0 | 4385 | 0.0620 | 0.9439 | 0.9521 | 0.9480 | 0.9871 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.1 |
|
- Pytorch 1.9.0+cu102 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.2 |
|
|