ratish/DBERT_CleanDesc_COLLISION_v10

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1992
  • Validation Loss: 1.6291
  • Train Accuracy: 0.6154
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 4575, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
1.6309 1.7295 0.3077 0
1.4522 1.7291 0.3077 1
1.3637 1.6656 0.3590 2
1.2159 1.5797 0.4103 3
1.0494 1.4799 0.4872 4
0.8847 1.4288 0.5385 5
0.7629 1.4239 0.5128 6
0.6739 1.4484 0.5128 7
0.5598 1.4533 0.6154 8
0.4606 1.4160 0.6154 9
0.3736 1.4206 0.5897 10
0.3065 1.5229 0.5897 11
0.2580 1.6168 0.5641 12
0.2342 1.5924 0.6410 13
0.1992 1.6291 0.6154 14

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.