ratish/DBERT_CleanDesc_MAKE_v10

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.3182
  • Validation Loss: 0.8903
  • Train Accuracy: 0.75
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
2.2603 2.0505 0.45 0
1.7907 1.6987 0.475 1
1.3820 1.4044 0.6 2
1.0496 1.2057 0.6 3
0.8393 1.0784 0.725 4
0.6652 0.9779 0.725 5
0.5508 0.9018 0.725 6
0.4662 0.8226 0.75 7
0.3664 0.8913 0.725 8
0.3182 0.8903 0.75 9

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.