NER-finetuning-BETO / README.md
raulgdp's picture
Training complete
1e26ace verified
|
raw
history blame
2.9 kB
metadata
license: cc-by-4.0
base_model: NazaGara/NER-fine-tuned-BETO
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: NER-finetuning-BETO
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.8416742493175614
          - name: Recall
            type: recall
            value: 0.8501838235294118
          - name: F1
            type: f1
            value: 0.8459076360310929
          - name: Accuracy
            type: accuracy
            value: 0.967827919662782

NER-finetuning-BETO

This model is a fine-tuned version of NazaGara/NER-fine-tuned-BETO on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2653
  • Precision: 0.8417
  • Recall: 0.8502
  • F1: 0.8459
  • Accuracy: 0.9678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0507 1.0 1041 0.1448 0.8298 0.8571 0.8432 0.9691
0.0333 2.0 2082 0.1728 0.8259 0.8481 0.8369 0.9678
0.0195 3.0 3123 0.1722 0.8392 0.8516 0.8453 0.9693
0.0147 4.0 4164 0.2037 0.8502 0.8488 0.8495 0.9679
0.011 5.0 5205 0.2041 0.8394 0.8529 0.8461 0.9695
0.0082 6.0 6246 0.2418 0.8410 0.8401 0.8406 0.9664
0.006 7.0 7287 0.2323 0.8448 0.8552 0.8500 0.9678
0.0046 8.0 8328 0.2415 0.8411 0.8527 0.8469 0.9691
0.003 9.0 9369 0.2502 0.8402 0.8495 0.8448 0.9677
0.0022 10.0 10410 0.2653 0.8417 0.8502 0.8459 0.9678

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1