raulgdp's picture
End of training
7aefa9d verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.6296160430423087
          - name: Recall
            type: recall
            value: 0.6202119971091303
          - name: F1
            type: f1
            value: 0.6248786407766991
          - name: Accuracy
            type: accuracy
            value: 0.9305489339527457

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2451
  • Precision: 0.6296
  • Recall: 0.6202
  • F1: 0.6249
  • Accuracy: 0.9305

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3571 1.0 521 0.2721 0.5804 0.5771 0.5787 0.9217
0.203 2.0 1042 0.2451 0.6296 0.6202 0.6249 0.9305

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1