SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model trained on the rbojja/labelled_bank_support_dataset dataset that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 10 classes
- Training Dataset: rbojja/labelled_bank_support_dataset
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
2 |
|
3 |
|
10 |
|
9 |
|
4 |
|
7 |
|
6 |
|
0 |
|
8 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8641 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/ft-intent-bank")
# Run inference
preds = model("I need to know the outstanding amount on my education loan.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 7 | 15.322 | 31 |
Label | Training Sample Count |
---|---|
0 | 7 |
1 | 797 |
2 | 29 |
3 | 18 |
4 | 1 |
6 | 15 |
7 | 7 |
8 | 6 |
9 | 63 |
10 | 57 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 16)
- max_steps: 3450
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.2179 | - |
0.0145 | 50 | 0.2598 | - |
0.0290 | 100 | 0.2349 | - |
0.0435 | 150 | 0.2019 | - |
0.0580 | 200 | 0.1686 | - |
0.0725 | 250 | 0.1375 | - |
0.0870 | 300 | 0.1265 | - |
0.1014 | 350 | 0.0954 | - |
0.1159 | 400 | 0.0794 | - |
0.1304 | 450 | 0.065 | - |
0.1449 | 500 | 0.0731 | - |
0.1594 | 550 | 0.0547 | - |
0.1739 | 600 | 0.043 | - |
0.1884 | 650 | 0.0327 | - |
0.2029 | 700 | 0.027 | - |
0.2174 | 750 | 0.0285 | - |
0.2319 | 800 | 0.0201 | - |
0.2464 | 850 | 0.0151 | - |
0.2609 | 900 | 0.0131 | - |
0.2754 | 950 | 0.0076 | - |
0.2899 | 1000 | 0.0147 | - |
0.3043 | 1050 | 0.0122 | - |
0.3188 | 1100 | 0.0109 | - |
0.3333 | 1150 | 0.0126 | - |
0.3478 | 1200 | 0.0108 | - |
0.3623 | 1250 | 0.009 | - |
0.3768 | 1300 | 0.0072 | - |
0.3913 | 1350 | 0.0051 | - |
0.4058 | 1400 | 0.0057 | - |
0.4203 | 1450 | 0.0056 | - |
0.4348 | 1500 | 0.0079 | - |
0.4493 | 1550 | 0.0076 | - |
0.4638 | 1600 | 0.0029 | - |
0.4783 | 1650 | 0.0039 | - |
0.4928 | 1700 | 0.003 | - |
0.5072 | 1750 | 0.0037 | - |
0.5217 | 1800 | 0.0022 | - |
0.5362 | 1850 | 0.0032 | - |
0.5507 | 1900 | 0.0034 | - |
0.5652 | 1950 | 0.006 | - |
0.5797 | 2000 | 0.0046 | - |
0.5942 | 2050 | 0.0026 | - |
0.6087 | 2100 | 0.0031 | - |
0.6232 | 2150 | 0.0041 | - |
0.6377 | 2200 | 0.0049 | - |
0.6522 | 2250 | 0.0015 | - |
0.6667 | 2300 | 0.0053 | - |
0.6812 | 2350 | 0.0033 | - |
0.6957 | 2400 | 0.0055 | - |
0.7101 | 2450 | 0.0044 | - |
0.7246 | 2500 | 0.0036 | - |
0.7391 | 2550 | 0.0038 | - |
0.7536 | 2600 | 0.0038 | - |
0.7681 | 2650 | 0.0027 | - |
0.7826 | 2700 | 0.0028 | - |
0.7971 | 2750 | 0.0038 | - |
0.8116 | 2800 | 0.0033 | - |
0.8261 | 2850 | 0.0035 | - |
0.8406 | 2900 | 0.002 | - |
0.8551 | 2950 | 0.0034 | - |
0.8696 | 3000 | 0.0053 | - |
0.8841 | 3050 | 0.0035 | - |
0.8986 | 3100 | 0.0016 | - |
0.9130 | 3150 | 0.0021 | - |
0.9275 | 3200 | 0.0021 | - |
0.9420 | 3250 | 0.005 | - |
0.9565 | 3300 | 0.0031 | - |
0.9710 | 3350 | 0.0038 | - |
0.9855 | 3400 | 0.0029 | - |
1.0 | 3450 | 0.0019 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for rbojja/ft-intent-bank
Base model
BAAI/bge-small-en-v1.5Dataset used to train rbojja/ft-intent-bank
Evaluation results
- Accuracy on rbojja/labelled_bank_support_datasettest set self-reported0.864