rbojja commited on
Commit
29d8025
·
verified ·
1 Parent(s): f03228b

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: I was charged twice for the same service on my last billing cycle. Can you
9
+ help me confirm this?
10
+ - text: Can you tell me if the ATM is available 24/7 at this location?
11
+ - text: Can you explain how my account balance affects the service fees I’m being
12
+ charged?
13
+ - text: I need to know the outstanding amount on my education loan.
14
+ - text: Can you break down how interest rates affect my monthly payments for a home
15
+ equity loan?
16
+ metrics:
17
+ - accuracy
18
+ pipeline_tag: text-classification
19
+ library_name: setfit
20
+ inference: true
21
+ datasets:
22
+ - rbojja/labelled_bank_support_dataset
23
+ base_model: BAAI/bge-small-en-v1.5
24
+ model-index:
25
+ - name: SetFit with BAAI/bge-small-en-v1.5
26
+ results:
27
+ - task:
28
+ type: text-classification
29
+ name: Text Classification
30
+ dataset:
31
+ name: rbojja/labelled_bank_support_dataset
32
+ type: rbojja/labelled_bank_support_dataset
33
+ split: test
34
+ metrics:
35
+ - type: accuracy
36
+ value: 0.8640988372093024
37
+ name: Accuracy
38
+ ---
39
+
40
+ # SetFit with BAAI/bge-small-en-v1.5
41
+
42
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [rbojja/labelled_bank_support_dataset](https://huggingface.co/datasets/rbojja/labelled_bank_support_dataset) dataset that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
43
+
44
+ The model has been trained using an efficient few-shot learning technique that involves:
45
+
46
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
47
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** SetFit
53
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
54
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
55
+ - **Maximum Sequence Length:** 512 tokens
56
+ - **Number of Classes:** 10 classes
57
+ - **Training Dataset:** [rbojja/labelled_bank_support_dataset](https://huggingface.co/datasets/rbojja/labelled_bank_support_dataset)
58
+ <!-- - **Language:** Unknown -->
59
+ <!-- - **License:** Unknown -->
60
+
61
+ ### Model Sources
62
+
63
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
64
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
65
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
66
+
67
+ ### Model Labels
68
+ | Label | Examples |
69
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
70
+ | 1 | <ul><li>'Can you explain the differences between fixed and variable interest rates for personal loans?'</li><li>'Can you clarify why I was charged a fee for my account this month?'</li><li>'How can I access your customer service features if I need assistance?'</li></ul> |
71
+ | 2 | <ul><li>'Could you please verify that my deposit cancellation has been completed?'</li><li>"I've noticed a discrepancy in my balance after my latest deposit. Can you confirm if it was processed correctly?"</li><li>'Could you verify that my recent payment has been reversed successfully?'</li></ul> |
72
+ | 3 | <ul><li>"How do changes in the central bank's interest rates affect the interest I earn on my savings account?"</li><li>'Can I share my success story about earning rewards for referring friends? The incentives really helped me and I think others should know!'</li><li>'After my recent loan denial, how can I strengthen my reapplication to improve my approval odds?'</li></ul> |
73
+ | 10 | <ul><li>"I just made a payment, but I'm not sure if it's been processed yet. Can you check for me?"</li><li>'I think there might be an error with my account balance; can you show me my most recent transactions?'</li><li>'I expected my payment to be completed by now, can you check the status for me?'</li></ul> |
74
+ | 9 | <ul><li>'Can you please pass on my thanks to the customer service representative who helped me with my account security concerns? Their support made all the difference!'</li><li>'I just wanted to say thank you for the quick help with my issue!'</li><li>'I want to express my appreciation for the security alerts I received. It’s nice to know my account is being protected so well!'</li></ul> |
75
+ | 4 | <ul><li>"I'm ending my account with you; can you provide a summary of my final transaction?"</li></ul> |
76
+ | 7 | <ul><li>'Can I leave a review about my downgrade process? I have some suggestions for improvement.'</li><li>'Can you send me a notification of all my completed payments for this month?'</li><li>'Can you tell me how I can benefit from any investment opportunities with your bank?'</li></ul> |
77
+ | 6 | <ul><li>'I just checked my banking statement and I don’t recognize this last charge. How can I contest that?'</li><li>"I believe I've been incorrectly charged for a subscription service. What steps do I take?"</li><li>'I appreciate the service you provide, but the support response time during the outage was unacceptable.'</li></ul> |
78
+ | 0 | <ul><li>'I’m sorry, but I need to check on a transaction that was denied because of insufficient funds. Can you help me resolve this situation?'</li><li>"I'm really sorry, but I still can't access my account even after resetting my password. What should I do next?"</li><li>"I've been mistakenly locked out of my account and I feel bad about it. Can you assist me in regaining access?"</li></ul> |
79
+ | 8 | <ul><li>'I recently used your services and I’m really satisfied. Is there a way to share my thoughts on my overall banking experience?'</li><li>'I think it would be great if final account statements could be sent out at the beginning of the month instead of the end. It allows for better planning and review.'</li><li>'I wanted to share that I found the loan application submission very straightforward. When can I expect to hear back about my approval?'</li></ul> |
80
+
81
+ ## Evaluation
82
+
83
+ ### Metrics
84
+ | Label | Accuracy |
85
+ |:--------|:---------|
86
+ | **all** | 0.8641 |
87
+
88
+ ## Uses
89
+
90
+ ### Direct Use for Inference
91
+
92
+ First install the SetFit library:
93
+
94
+ ```bash
95
+ pip install setfit
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+
100
+ ```python
101
+ from setfit import SetFitModel
102
+
103
+ # Download from the 🤗 Hub
104
+ model = SetFitModel.from_pretrained("rbojja/ft-intent-bank")
105
+ # Run inference
106
+ preds = model("I need to know the outstanding amount on my education loan.")
107
+ ```
108
+
109
+ <!--
110
+ ### Downstream Use
111
+
112
+ *List how someone could finetune this model on their own dataset.*
113
+ -->
114
+
115
+ <!--
116
+ ### Out-of-Scope Use
117
+
118
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
119
+ -->
120
+
121
+ <!--
122
+ ## Bias, Risks and Limitations
123
+
124
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
125
+ -->
126
+
127
+ <!--
128
+ ### Recommendations
129
+
130
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
131
+ -->
132
+
133
+ ## Training Details
134
+
135
+ ### Training Set Metrics
136
+ | Training set | Min | Median | Max |
137
+ |:-------------|:----|:-------|:----|
138
+ | Word count | 7 | 15.322 | 31 |
139
+
140
+ | Label | Training Sample Count |
141
+ |:------|:----------------------|
142
+ | 0 | 7 |
143
+ | 1 | 797 |
144
+ | 2 | 29 |
145
+ | 3 | 18 |
146
+ | 4 | 1 |
147
+ | 6 | 15 |
148
+ | 7 | 7 |
149
+ | 8 | 6 |
150
+ | 9 | 63 |
151
+ | 10 | 57 |
152
+
153
+ ### Training Hyperparameters
154
+ - batch_size: (16, 16)
155
+ - num_epochs: (1, 16)
156
+ - max_steps: 3450
157
+ - sampling_strategy: oversampling
158
+ - body_learning_rate: (2e-05, 1e-05)
159
+ - head_learning_rate: 0.01
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: False
165
+ - warmup_proportion: 0.1
166
+ - l2_weight: 0.01
167
+ - seed: 42
168
+ - eval_max_steps: -1
169
+ - load_best_model_at_end: False
170
+
171
+ ### Training Results
172
+ | Epoch | Step | Training Loss | Validation Loss |
173
+ |:------:|:----:|:-------------:|:---------------:|
174
+ | 0.0003 | 1 | 0.2179 | - |
175
+ | 0.0145 | 50 | 0.2598 | - |
176
+ | 0.0290 | 100 | 0.2349 | - |
177
+ | 0.0435 | 150 | 0.2019 | - |
178
+ | 0.0580 | 200 | 0.1686 | - |
179
+ | 0.0725 | 250 | 0.1375 | - |
180
+ | 0.0870 | 300 | 0.1265 | - |
181
+ | 0.1014 | 350 | 0.0954 | - |
182
+ | 0.1159 | 400 | 0.0794 | - |
183
+ | 0.1304 | 450 | 0.065 | - |
184
+ | 0.1449 | 500 | 0.0731 | - |
185
+ | 0.1594 | 550 | 0.0547 | - |
186
+ | 0.1739 | 600 | 0.043 | - |
187
+ | 0.1884 | 650 | 0.0327 | - |
188
+ | 0.2029 | 700 | 0.027 | - |
189
+ | 0.2174 | 750 | 0.0285 | - |
190
+ | 0.2319 | 800 | 0.0201 | - |
191
+ | 0.2464 | 850 | 0.0151 | - |
192
+ | 0.2609 | 900 | 0.0131 | - |
193
+ | 0.2754 | 950 | 0.0076 | - |
194
+ | 0.2899 | 1000 | 0.0147 | - |
195
+ | 0.3043 | 1050 | 0.0122 | - |
196
+ | 0.3188 | 1100 | 0.0109 | - |
197
+ | 0.3333 | 1150 | 0.0126 | - |
198
+ | 0.3478 | 1200 | 0.0108 | - |
199
+ | 0.3623 | 1250 | 0.009 | - |
200
+ | 0.3768 | 1300 | 0.0072 | - |
201
+ | 0.3913 | 1350 | 0.0051 | - |
202
+ | 0.4058 | 1400 | 0.0057 | - |
203
+ | 0.4203 | 1450 | 0.0056 | - |
204
+ | 0.4348 | 1500 | 0.0079 | - |
205
+ | 0.4493 | 1550 | 0.0076 | - |
206
+ | 0.4638 | 1600 | 0.0029 | - |
207
+ | 0.4783 | 1650 | 0.0039 | - |
208
+ | 0.4928 | 1700 | 0.003 | - |
209
+ | 0.5072 | 1750 | 0.0037 | - |
210
+ | 0.5217 | 1800 | 0.0022 | - |
211
+ | 0.5362 | 1850 | 0.0032 | - |
212
+ | 0.5507 | 1900 | 0.0034 | - |
213
+ | 0.5652 | 1950 | 0.006 | - |
214
+ | 0.5797 | 2000 | 0.0046 | - |
215
+ | 0.5942 | 2050 | 0.0026 | - |
216
+ | 0.6087 | 2100 | 0.0031 | - |
217
+ | 0.6232 | 2150 | 0.0041 | - |
218
+ | 0.6377 | 2200 | 0.0049 | - |
219
+ | 0.6522 | 2250 | 0.0015 | - |
220
+ | 0.6667 | 2300 | 0.0053 | - |
221
+ | 0.6812 | 2350 | 0.0033 | - |
222
+ | 0.6957 | 2400 | 0.0055 | - |
223
+ | 0.7101 | 2450 | 0.0044 | - |
224
+ | 0.7246 | 2500 | 0.0036 | - |
225
+ | 0.7391 | 2550 | 0.0038 | - |
226
+ | 0.7536 | 2600 | 0.0038 | - |
227
+ | 0.7681 | 2650 | 0.0027 | - |
228
+ | 0.7826 | 2700 | 0.0028 | - |
229
+ | 0.7971 | 2750 | 0.0038 | - |
230
+ | 0.8116 | 2800 | 0.0033 | - |
231
+ | 0.8261 | 2850 | 0.0035 | - |
232
+ | 0.8406 | 2900 | 0.002 | - |
233
+ | 0.8551 | 2950 | 0.0034 | - |
234
+ | 0.8696 | 3000 | 0.0053 | - |
235
+ | 0.8841 | 3050 | 0.0035 | - |
236
+ | 0.8986 | 3100 | 0.0016 | - |
237
+ | 0.9130 | 3150 | 0.0021 | - |
238
+ | 0.9275 | 3200 | 0.0021 | - |
239
+ | 0.9420 | 3250 | 0.005 | - |
240
+ | 0.9565 | 3300 | 0.0031 | - |
241
+ | 0.9710 | 3350 | 0.0038 | - |
242
+ | 0.9855 | 3400 | 0.0029 | - |
243
+ | 1.0 | 3450 | 0.0019 | - |
244
+
245
+ ### Framework Versions
246
+ - Python: 3.10.12
247
+ - SetFit: 1.1.1
248
+ - Sentence Transformers: 3.3.1
249
+ - Transformers: 4.47.1
250
+ - PyTorch: 2.5.1+cu124
251
+ - Datasets: 3.2.0
252
+ - Tokenizers: 0.21.0
253
+
254
+ ## Citation
255
+
256
+ ### BibTeX
257
+ ```bibtex
258
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
259
+ doi = {10.48550/ARXIV.2209.11055},
260
+ url = {https://arxiv.org/abs/2209.11055},
261
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
262
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
263
+ title = {Efficient Few-Shot Learning Without Prompts},
264
+ publisher = {arXiv},
265
+ year = {2022},
266
+ copyright = {Creative Commons Attribution 4.0 International}
267
+ }
268
+ ```
269
+
270
+ <!--
271
+ ## Glossary
272
+
273
+ *Clearly define terms in order to be accessible across audiences.*
274
+ -->
275
+
276
+ <!--
277
+ ## Model Card Authors
278
+
279
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
280
+ -->
281
+
282
+ <!--
283
+ ## Model Card Contact
284
+
285
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
286
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-small-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.47.1",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f21e707eb46bfe1edc31fcb43858d1a5f038a378d14d13664a6eb578df8a9f4
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:805fc1345cf30b4828ed75e4501995b4bcc29eaba368dc83cb6d6b153891ed4e
3
+ size 31719
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff