Speech Language Models
Collection
6 items
•
Updated
japanese-wav2vec2-base-rs35kh
This model is a wav2vec 2.0 Base fine-tuned on the large-scale Japanese ASR corpus ReazonSpeech v2.0.
You can use this model through transformers
library:
import librosa
import numpy as np
from transformers import AutoProcessor, Wav2Vec2ForCTC
model = Wav2Vec2ForCTC.from_pretrained(
"reazon-research/japanese-wav2vec2-base-rs35kh",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
).to("cuda")
processor = AutoProcessor.from_pretrained("reazon-research/japanese-wav2vec2-base-rs35kh")
audio, _ = librosa.load(audio_filepath, sr=16_000)
audio = np.pad(audio, pad_width=int(0.5 * 16_000)) # Recommend to pad audio before inference
input_values = processor(
audio,
return_tensors="pt",
sampling_rate=16_000
).input_values.to("cuda").to(torch.bfloat16)
with torch.inference_mode():
logits = model(input_values).logits.cpu()
predicted_ids = torch.argmax(logits, dim=-1)[0]
transcription = processor.decode(predicted_ids, skip_special_tokens=True)
We report the Character Error Rate (CER) of our model and the other wav2vec2 families.
Model | #Prameters⬇ | AVERAGE⬇ | JSUT-BASIC5000⬇ | Common Voice⬇ | TEDxJP-10K⬇ |
---|---|---|---|---|---|
reazon-research/japanese-wav2vec2-base-rs35kh | 96.7M | 20.40% | 13.22% | 23.76% | 24.23% |
Ivydata/wav2vec2-large-xlsr-53-japanese | 318M | 24.23% | 13.83% | 18.15% | 40.72% |
jonatasgrosman/wav2vec2-large-xlsr-53-japanese | 317M | 31.82% | 4.25% | 40.58% | 50.63% |
vumichien/wav2vec2-large-xlsr-japanese | 318M | 39.87% | 4.21% | 53.29% | 62.12% |
We also report the CER for long-form speech.
Model | #Prameters⬇ | JSUT-BOOK⬇ |
---|---|---|
reazon-research/japanese-wav2vec2-base-rs35kh | 96.7M | 82.84% |
Ivydata/wav2vec2-large-xlsr-53-japanese | 318M | 65.60% |
jonatasgrosman/wav2vec2-large-xlsr-53-japanese | 317M | 46.20% |
vumichien/wav2vec2-large-xlsr-japanese | 318M | 46.52% |
@misc{reazon-research-japanese-wav2vec2-base-rs35kh,
title={japanese-wav2vec2-base-rs35kh},
author={Sasaki, Yuta},
url = {https://huggingface.co/reazon-research/japanese-wav2vec2-base-rs35kh},
year = {2024}
}
Base model
reazon-research/japanese-wav2vec2-base