Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: float16
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False
Framework versions
- PEFT 0.5.0
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the ๐ Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 63.57 |
ENEM Challenge (No Images) | 56.82 |
BLUEX (No Images) | 47.15 |
OAB Exams | 36.31 |
Assin2 RTE | 88.92 |
Assin2 STS | 76.37 |
FaQuAD NLI | 67.17 |
HateBR Binary | 82.02 |
PT Hate Speech Binary | 69.24 |
tweetSentBR | 48.14 |
- Downloads last month
- 2
Space using recogna-nlp/mistralbode_7b_qlora_ultraalpaca 1
Evaluation results
- accuracy on ENEM Challenge (No Images)Open Portuguese LLM Leaderboard56.820
- accuracy on BLUEX (No Images)Open Portuguese LLM Leaderboard47.150
- accuracy on OAB ExamsOpen Portuguese LLM Leaderboard36.310
- f1-macro on Assin2 RTEtest set Open Portuguese LLM Leaderboard88.920
- pearson on Assin2 STStest set Open Portuguese LLM Leaderboard76.370
- f1-macro on FaQuAD NLItest set Open Portuguese LLM Leaderboard67.170
- f1-macro on HateBR Binarytest set Open Portuguese LLM Leaderboard82.020
- f1-macro on PT Hate Speech Binarytest set Open Portuguese LLM Leaderboard69.240
- f1-macro on tweetSentBRtest set Open Portuguese LLM Leaderboard48.140