reem442/Bert
This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0990
- Train Accuracy: 0.947
- Validation Loss: 0.1458
- Validation Accuracy: 0.9470
- Validation Precision: 0.9490
- Validation Recall: 0.947
- Validation F1: 0.9466
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 5000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Validation Precision | Validation Recall | Validation F1 | Epoch |
---|---|---|---|---|---|---|---|
0.1750 | 0.943 | 0.1579 | 0.9430 | 0.9447 | 0.943 | 0.9426 | 0 |
0.1194 | 0.9415 | 0.1589 | 0.9415 | 0.9434 | 0.9415 | 0.9409 | 1 |
0.0990 | 0.947 | 0.1458 | 0.9470 | 0.9490 | 0.947 | 0.9466 | 2 |
Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 61
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for reem442/Bert
Base model
google-bert/bert-base-uncased