library_name: transformers
tags: []
model-index:
- name: Llama3-pt_bt_orca_cabrita_qkvLora
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 35.06
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 31.43
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 34.76
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 87.76
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 66.75
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.97
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 76.59
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 66.02
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 63.36
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=rfanucchi/Llama3-pt_bt_orca_cabrita_qkvLora
name: Open Portuguese LLM Leaderboard
Model Card for Model ID
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 56.19 |
ENEM Challenge (No Images) | 35.06 |
BLUEX (No Images) | 31.43 |
OAB Exams | 34.76 |
Assin2 RTE | 87.76 |
Assin2 STS | 66.75 |
FaQuAD NLI | 43.97 |
HateBR Binary | 76.59 |
PT Hate Speech Binary | 66.02 |
tweetSentBR | 63.36 |