wav2vec2-base-timit-demo-colab

This model is a fine-tuned version of facebook/hubert-large-ls960-ft on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0280
  • Wer: 0.0082

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1152 1.42 500 0.0416 0.0159
0.0803 2.83 1000 0.0372 0.0144
0.0672 4.25 1500 0.0345 0.0119
0.0564 5.67 2000 0.0338 0.0106
0.0513 7.08 2500 0.0307 0.0100
0.0448 8.5 3000 0.0343 0.0098
0.0374 9.92 3500 0.0300 0.0084
0.0368 11.33 4000 0.0314 0.0086
0.0388 12.75 4500 0.0283 0.0089
0.0277 14.16 5000 0.0302 0.0089
0.0298 15.58 5500 0.0298 0.0089
0.0271 17.0 6000 0.0320 0.0098
0.024 18.41 6500 0.0286 0.0088
0.0236 19.83 7000 0.0284 0.0084
0.0238 21.25 7500 0.0290 0.0086
0.0227 22.66 8000 0.0284 0.0093
0.0198 24.08 8500 0.0280 0.0088
0.0225 25.5 9000 0.0281 0.0086
0.018 26.91 9500 0.0280 0.0082
0.0178 28.33 10000 0.0280 0.0082
0.0209 29.75 10500 0.0280 0.0082

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.9.0+cu111
  • Datasets 1.17.0
  • Tokenizers 0.10.3
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.