See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 24a19a7ab43df05e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/24a19a7ab43df05e_train_data.json
type:
field_instruction: role
field_output: text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/0986a89f-885c-4522-a4b0-1673f1d20546
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1980
micro_batch_size: 4
mlflow_experiment_name: /tmp/24a19a7ab43df05e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.0370441714700609
wandb_entity: null
wandb_mode: online
wandb_name: 93576204-0c9b-4c0d-8f63-79add5c5fd0b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 93576204-0c9b-4c0d-8f63-79add5c5fd0b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
0986a89f-885c-4522-a4b0-1673f1d20546
This model is a fine-tuned version of HuggingFaceH4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3498
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1980
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3776 | 0.0002 | 1 | 10.3774 |
10.3616 | 0.0246 | 100 | 10.3609 |
10.3572 | 0.0492 | 200 | 10.3583 |
10.3564 | 0.0739 | 300 | 10.3559 |
10.3576 | 0.0985 | 400 | 10.3549 |
10.3541 | 0.1231 | 500 | 10.3537 |
10.3508 | 0.1477 | 600 | 10.3525 |
10.3496 | 0.1723 | 700 | 10.3519 |
10.3489 | 0.1970 | 800 | 10.3514 |
10.3555 | 0.2216 | 900 | 10.3510 |
10.3512 | 0.2462 | 1000 | 10.3507 |
10.3474 | 0.2708 | 1100 | 10.3505 |
10.3529 | 0.2954 | 1200 | 10.3503 |
10.3528 | 0.3201 | 1300 | 10.3501 |
10.3526 | 0.3447 | 1400 | 10.3500 |
10.3521 | 0.3693 | 1500 | 10.3499 |
10.3542 | 0.3939 | 1600 | 10.3498 |
10.349 | 0.4185 | 1700 | 10.3498 |
10.3473 | 0.4432 | 1800 | 10.3498 |
10.3506 | 0.4678 | 1900 | 10.3498 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for romainnn/0986a89f-885c-4522-a4b0-1673f1d20546
Base model
HuggingFaceH4/tiny-random-LlamaForCausalLM