See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: llamafactory/tiny-random-Llama-3
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 006c0b96ba232e69_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/006c0b96ba232e69_train_data.json
type:
field_instruction: input
field_output: output_answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/263f118d-7409-47bb-a345-a9c30c9e0d2e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4224
micro_batch_size: 4
mlflow_experiment_name: /tmp/006c0b96ba232e69_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.043117572998051086
wandb_entity: null
wandb_mode: online
wandb_name: 74e35e73-fca6-4927-a4ca-1b2f031982ea
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 74e35e73-fca6-4927-a4ca-1b2f031982ea
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
263f118d-7409-47bb-a345-a9c30c9e0d2e
This model is a fine-tuned version of llamafactory/tiny-random-Llama-3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.6429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4224
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.7609 | 0.0003 | 1 | 11.7689 |
11.732 | 0.0288 | 100 | 11.7277 |
11.7374 | 0.0577 | 200 | 11.7240 |
11.6868 | 0.0865 | 300 | 11.7068 |
11.7167 | 0.1154 | 400 | 11.6954 |
11.7079 | 0.1442 | 500 | 11.6860 |
11.6892 | 0.1730 | 600 | 11.6792 |
11.6885 | 0.2019 | 700 | 11.6725 |
11.7026 | 0.2307 | 800 | 11.6682 |
11.6537 | 0.2595 | 900 | 11.6638 |
11.6476 | 0.2884 | 1000 | 11.6601 |
11.6809 | 0.3172 | 1100 | 11.6582 |
11.7041 | 0.3461 | 1200 | 11.6558 |
11.6425 | 0.3749 | 1300 | 11.6542 |
11.6837 | 0.4037 | 1400 | 11.6517 |
11.6708 | 0.4326 | 1500 | 11.6509 |
11.695 | 0.4614 | 1600 | 11.6494 |
11.6767 | 0.4902 | 1700 | 11.6490 |
11.6534 | 0.5191 | 1800 | 11.6481 |
11.643 | 0.5479 | 1900 | 11.6464 |
11.7032 | 0.5768 | 2000 | 11.6464 |
11.6812 | 0.6056 | 2100 | 11.6457 |
11.6539 | 0.6344 | 2200 | 11.6452 |
11.6759 | 0.6633 | 2300 | 11.6451 |
11.6824 | 0.6921 | 2400 | 11.6444 |
11.635 | 0.7210 | 2500 | 11.6442 |
11.6331 | 0.7498 | 2600 | 11.6436 |
11.6758 | 0.7786 | 2700 | 11.6432 |
11.6911 | 0.8075 | 2800 | 11.6429 |
11.6362 | 0.8363 | 2900 | 11.6431 |
11.666 | 0.8651 | 3000 | 11.6429 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for romainnn/263f118d-7409-47bb-a345-a9c30c9e0d2e
Base model
llamafactory/tiny-random-Llama-3