TinyStories-33M / README.md
roneneldan's picture
Update README.md
d1936ec
|
raw
history blame
929 Bytes
---
datasets:
- roneneldan/TinyStories
---
Model trained on the TinyStories Dataset, see https://arxiv.org/abs/2305.07759
Based on GPT-Neo architecture.
License: mit
---
hyperparams used to train this model:
lr = 5e-4
lr_schedule = constant
wd=0.1
adam_beta1=0.9, adam_beta2 = 0.95
context length=512
batch size=80
gradient accumulation steps=16
------ EXAMPLE USAGE ---
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
model = AutoModelForCausalLM.from_pretrained('roneneldan/TinyStories-33M')
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
prompt = "Once upon a time there was"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# Generate completion
output = model.generate(input_ids, max_length = 1000, num_beams=1)
# Decode the completion
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
# Print the generated text
print(output_text)