E5-V: Universal Embeddings with Multimodal Large Language Models

E5-V is fine-tuned based on lmms-lab/llama3-llava-next-8b.

Overview

We propose a framework, called E5-V, to adpat MLLMs for achieving multimodal embeddings. E5-V effectively bridges the modality gap between different types of inputs, demonstrating strong performance in multimodal embeddings even without fine-tuning. We also propose a single modality training approach for E5-V, where the model is trained exclusively on text pairs, demonstrating better performance than multimodal training.

More details can be found in https://github.com/kongds/E5-V

Example

import torch
import torch.nn.functional as F
import requests
from PIL import Image
from transformers import AutoTokenizer
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration

llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n'

processor = LlavaNextProcessor.from_pretrained('royokong/e5-v')
model = LlavaNextForConditionalGeneration.from_pretrained('royokong/e5-v', torch_dtype=torch.float16).cuda()

img_prompt = llama3_template.format('<image>\nSummary above image in one word: ')
text_prompt = llama3_template.format('<sent>\nSummary above sentence in one word: ')

urls = ['https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/American_Eskimo_Dog.jpg/360px-American_Eskimo_Dog.jpg',
        'https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Felis_catus-cat_on_snow.jpg/179px-Felis_catus-cat_on_snow.jpg']
images = [Image.open(requests.get(url, stream=True).raw) for url in urls]

texts = ['A dog sitting in the grass.',
         'A cat standing in the snow.']

text_inputs = processor([text_prompt.replace('<sent>', text) for text in texts], return_tensors="pt", padding=True).to('cuda')
img_inputs = processor([img_prompt]*len(images), images, return_tensors="pt", padding=True).to('cuda')

with torch.no_grad():
    text_embs = model(**text_inputs, output_hidden_states=True, return_dict=True).hidden_states[-1][:, -1, :]
    img_embs = model(**img_inputs, output_hidden_states=True, return_dict=True).hidden_states[-1][:, -1, :]

    text_embs = F.normalize(text_embs, dim=-1)
    img_embs = F.normalize(img_embs, dim=-1)

print(text_embs @ img_embs.t())
Downloads last month
1,140
Safetensors
Model size
8.36B params
Tensor type
FP16
ยท
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Space using royokong/e5-v 1