Usage

Find below some example scripts on how to use the model in transformers:

Using the Pytorch model

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Load peft config for pre-trained checkpoint etc.
peft_model_id = "rsonavane/flan-t5-xl-alpaca-dolly-lora-peft"
config = PeftConfig.from_pretrained(peft_model_id)

# load base LLM model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path,  load_in_8bit=True,  device_map={"":0})
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id, device_map={"":0})

Prompt generation

def generate_prompt(instruction: str, input_ctxt: str = "") -> str:
    if input_ctxt:
        return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input_ctxt}

### Response:"""
    else:
        return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Response:"""

Inference


input_ctxt = ""
instruction = ""

input_text = generate_prompt(instruction, input_ctxt)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
outputs = model.generate(input_ids)
print(tokenizer.decode(outputs[0]))

Training Details

Intended for conversation analysis, closed qna and summarization. Trained on instructions from doll-15k, alpaca-52k and samsum dataset.

Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support text2text-generation models for peft library.

Datasets used to train rsonavane/flan-t5-xl-alpaca-dolly-lora-peft