ryantaw's picture
End of training
c9c1db6
|
raw
history blame
2.8 kB
metadata
license: mit
base_model: prajjwal1/bert-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-small-finetuned
    results: []

bert-small-finetuned

This model is a fine-tuned version of prajjwal1/bert-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0048
  • Accuracy: 0.6038
  • F1 Score: 0.6018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 86
  • eval_batch_size: 86
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score
1.3167 1.0 18 1.2414 0.4151 0.3857
1.1845 2.0 36 1.1500 0.5148 0.5148
1.0823 3.0 54 1.0743 0.5499 0.5543
0.995 4.0 72 1.0359 0.5553 0.5529
0.9242 5.0 90 1.0195 0.5849 0.5781
0.8742 6.0 108 1.0028 0.5741 0.5758
0.8237 7.0 126 1.0033 0.5930 0.5901
0.7893 8.0 144 0.9967 0.5930 0.5922
0.7332 9.0 162 1.0088 0.5957 0.5924
0.6997 10.0 180 1.0048 0.6038 0.6018
0.6836 11.0 198 1.0120 0.6011 0.5981
0.6571 12.0 216 1.0084 0.5849 0.5864
0.6253 13.0 234 1.0167 0.5903 0.5938
0.5902 14.0 252 1.0184 0.5930 0.5965
0.5766 15.0 270 1.0340 0.5930 0.5925
0.5591 16.0 288 1.0399 0.5930 0.5931
0.5353 17.0 306 1.0364 0.5930 0.5944
0.5205 18.0 324 1.0412 0.5876 0.5889
0.5197 19.0 342 1.0410 0.5849 0.5867
0.5222 20.0 360 1.0418 0.5984 0.5990

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1