Original model card
Buy me a coffee if you like this project ;)
Description
GGML Format model files for This project.
inference
import ctransformers
from ctransformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(output_dir, ggml_file,
gpu_layers=32, model_type="llama")
manual_input: str = "Tell me about your last dream, please."
llm(manual_input,
max_new_tokens=256,
temperature=0.9,
top_p= 0.7)
Original model card
A bilingual instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/Baichuan-13B-Base
- Instruction-following datasets used: alpaca-en, alpaca-zh, sharegpt, open assistant, lima, refgpt
- Training framework: https://github.com/hiyouga/LLaMA-Efficient-Tuning
Usage:
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("hiyouga/baichuan-13b-sft", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-13b-sft", trust_remote_code=True).cuda()
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
query = "晚上睡不着怎么办"
template = (
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
"Human: {}\nAssistant: "
)
inputs = tokenizer([template.format(query)], return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer)
You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning
python src/cli_demo.py --template default --model_name_or_path hiyouga/baichuan-13b-sft
You can reproduce our results by visiting the following step-by-step (Chinese) guide:
https://zhuanlan.zhihu.com/p/645010851
or using the following scripts in LLaMA-Efficient-Tuning:
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
--model_name_or_path baichuan-inc/Baichuan-13B-Base \
--do_train \
--dataset alpaca_gpt4_en,alpaca_gpt4_zh,self_cognition,oaast_sft,sharegpt_zh,refgpt_zh_p1,lima,self_cognition \
--template default \
--finetuning_type lora \
--lora_rank 32 \
--lora_target W_pack,o_proj,down_proj,up_proj,gate_proj \
--output_dir baichuan_13b_lora \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 8 \
--preprocessing_num_workers 16 \
--max_source_length 1024 \
--max_target_length 512 \
--optim paged_adamw_32bit \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--warmup_steps 100 \
--learning_rate 3e-5 \
--max_grad_norm 0.5 \
--num_train_epochs 2.0 \
--quantization_bit 4 \
--plot_loss \
--fp16
Loss curve:
Examples:
Question | Baichuan-13b-sft | ChatGPT |
---|---|---|
你是谁 | 我是 <NAME>,一款由 <AUTHOR> 开发的人工智能助手。我可以回答各种问题,提供帮助和支持。 | 我是ChatGPT,一个由OpenAI开发的人工智能语言模型。我基于GPT-3.5架构训练,旨在回答各种问题和提供帮助。有什么我可以帮助你的吗? |
中国第三代战斗机的代表是什么? | 中 |
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.