metadata
language:
- hi
- en
- multilingual
license: mit
tags:
- codeswitching
- hindi-english
- ner
datasets:
- lince
codeswitch-hineng-ner-lince
This is a pretrained model for Name Entity Recognition of Hindi-english
code-mixed data used from LinCE
This model is trained for this below repository.
https://github.com/sagorbrur/codeswitch
To install codeswitch:
pip install codeswitch
Name Entity Recognition of Code-Mixed Data
- Method-1
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-hineng-ner-lince")
model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-hineng-ner-lince")
ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
ner_model("put any hindi english code-mixed sentence")
- Method-2
from codeswitch.codeswitch import NER
ner = NER('hin-eng')
text = "" # your mixed sentence
result = ner.tag(text)
print(result)