saishf's picture
Update README.md
ec1288f verified
metadata
license: cc-by-nc-4.0
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - Sao10K/Fimbulvetr-10.7B-v1
  - saishf/Kuro-Lotus-10.7B
model-index:
  - name: Fimbulvetr-Kuro-Lotus-10.7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.54
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 87.87
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.99
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 60.95
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.14
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 66.87
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fimbulvetr-Kuro-Lotus-10.7B
          name: Open LLM Leaderboard

image/png


  • This model is a merge of my personal favourite models, i couldn't decide between them so why not have both? Without MOE cause gpu poor :3

  • With my own tests it gives kuro-lotus like results without the requirement for a highly detailed character card and stays coherent when roping up to 8K context.

  • I personally use the "Universal Light" preset in silly tavern, with "alpaca" the results can be short but are longer with "alpaca roleplay".

  • "Universal Light" preset can be extremely creative but sometimes likes to act for user with some cards, for those i like just the "default" but any preset seems to work!

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: saishf/Kuro-Lotus-10.7B
        layer_range: [0, 48]
      - model: Sao10K/Fimbulvetr-10.7B-v1
        layer_range: [0, 48]
merge_method: slerp
base_model: saishf/Kuro-Lotus-10.7B
parameters:
  t:
    - filter: self_attn
      value: [0.6, 0.7, 0.8, 0.9, 1]
    - filter: mlp
      value: [0.4, 0.3, 0.2, 0.1, 0]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.73
AI2 Reasoning Challenge (25-Shot) 69.54
HellaSwag (10-Shot) 87.87
MMLU (5-Shot) 66.99
TruthfulQA (0-shot) 60.95
Winogrande (5-shot) 84.14
GSM8k (5-shot) 66.87