arabert_baseline_relevance_task4_fold1
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0752
- Qwk: 0.0
- Mse: 0.0752
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 1.0 | 2 | 0.4061 | 0.0 | 0.4061 |
No log | 2.0 | 4 | 0.1232 | 0.0 | 0.1232 |
No log | 3.0 | 6 | 0.1020 | 0.0 | 0.1020 |
No log | 4.0 | 8 | 0.1130 | 0.0400 | 0.1130 |
No log | 5.0 | 10 | 0.1198 | 0.0 | 0.1198 |
No log | 6.0 | 12 | 0.1295 | 0.0 | 0.1295 |
No log | 7.0 | 14 | 0.1092 | 0.0 | 0.1092 |
No log | 8.0 | 16 | 0.0901 | 0.0 | 0.0901 |
No log | 9.0 | 18 | 0.0786 | 0.0 | 0.0786 |
No log | 10.0 | 20 | 0.0752 | 0.0 | 0.0752 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for salbatarni/arabert_baseline_relevance_task4_fold1
Base model
aubmindlab/bert-base-arabertv02