|
--- |
|
base_model: aubmindlab/bert-base-arabertv02 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: arabert_baseline_development_task7_fold1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# arabert_baseline_development_task7_fold1 |
|
|
|
This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4808 |
|
- Qwk: 0.6800 |
|
- Mse: 0.4658 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:| |
|
| No log | 0.3333 | 2 | 1.1708 | 0.1401 | 1.1442 | |
|
| No log | 0.6667 | 4 | 0.6797 | 0.4733 | 0.6689 | |
|
| No log | 1.0 | 6 | 0.8726 | 0.35 | 0.8601 | |
|
| No log | 1.3333 | 8 | 0.6330 | 0.4407 | 0.6258 | |
|
| No log | 1.6667 | 10 | 0.4729 | 0.7317 | 0.4705 | |
|
| No log | 2.0 | 12 | 0.4560 | 0.7727 | 0.4525 | |
|
| No log | 2.3333 | 14 | 0.4835 | 0.5161 | 0.4748 | |
|
| No log | 2.6667 | 16 | 0.6021 | 0.4361 | 0.5871 | |
|
| No log | 3.0 | 18 | 0.5490 | 0.5036 | 0.5343 | |
|
| No log | 3.3333 | 20 | 0.4924 | 0.5772 | 0.4790 | |
|
| No log | 3.6667 | 22 | 0.4506 | 0.6531 | 0.4384 | |
|
| No log | 4.0 | 24 | 0.4816 | 0.6710 | 0.4656 | |
|
| No log | 4.3333 | 26 | 0.5471 | 0.5818 | 0.5260 | |
|
| No log | 4.6667 | 28 | 0.5883 | 0.4286 | 0.5652 | |
|
| No log | 5.0 | 30 | 0.5645 | 0.4971 | 0.5423 | |
|
| No log | 5.3333 | 32 | 0.4974 | 0.5823 | 0.4779 | |
|
| No log | 5.6667 | 34 | 0.4623 | 0.6369 | 0.4450 | |
|
| No log | 6.0 | 36 | 0.4534 | 0.6980 | 0.4376 | |
|
| No log | 6.3333 | 38 | 0.4859 | 0.6369 | 0.4690 | |
|
| No log | 6.6667 | 40 | 0.5046 | 0.5823 | 0.4879 | |
|
| No log | 7.0 | 42 | 0.4998 | 0.6225 | 0.4840 | |
|
| No log | 7.3333 | 44 | 0.4877 | 0.6434 | 0.4725 | |
|
| No log | 7.6667 | 46 | 0.4853 | 0.6434 | 0.4702 | |
|
| No log | 8.0 | 48 | 0.4746 | 0.6434 | 0.4601 | |
|
| No log | 8.3333 | 50 | 0.4732 | 0.6434 | 0.4588 | |
|
| No log | 8.6667 | 52 | 0.4819 | 0.6434 | 0.4671 | |
|
| No log | 9.0 | 54 | 0.4873 | 0.6225 | 0.4722 | |
|
| No log | 9.3333 | 56 | 0.4833 | 0.6800 | 0.4684 | |
|
| No log | 9.6667 | 58 | 0.4812 | 0.6800 | 0.4662 | |
|
| No log | 10.0 | 60 | 0.4808 | 0.6800 | 0.4658 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|