arabert_cross_organization_task4_fold0

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7387
  • Qwk: 0.5925
  • Mse: 0.7387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.1176 2 3.7003 0.0594 3.6971
No log 0.2353 4 2.4103 0.0127 2.4085
No log 0.3529 6 1.7582 0.2177 1.7571
No log 0.4706 8 1.5666 0.3222 1.5658
No log 0.5882 10 0.9860 0.4576 0.9866
No log 0.7059 12 0.9585 0.5399 0.9591
No log 0.8235 14 1.3953 0.4078 1.3949
No log 0.9412 16 1.6278 0.3501 1.6269
No log 1.0588 18 1.2485 0.4062 1.2480
No log 1.1765 20 0.9325 0.4653 0.9323
No log 1.2941 22 0.8750 0.5046 0.8747
No log 1.4118 24 0.9684 0.4851 0.9679
No log 1.5294 26 1.3655 0.3843 1.3644
No log 1.6471 28 1.0699 0.4636 1.0693
No log 1.7647 30 0.7323 0.6264 0.7322
No log 1.8824 32 0.7409 0.6340 0.7408
No log 2.0 34 0.7342 0.6187 0.7341
No log 2.1176 36 0.7935 0.5765 0.7932
No log 2.2353 38 1.0980 0.4535 1.0972
No log 2.3529 40 1.0511 0.4714 1.0504
No log 2.4706 42 0.8556 0.5268 0.8552
No log 2.5882 44 0.7684 0.5983 0.7681
No log 2.7059 46 0.8207 0.5721 0.8206
No log 2.8235 48 0.9052 0.5593 0.9050
No log 2.9412 50 0.8417 0.5743 0.8416
No log 3.0588 52 0.7671 0.6038 0.7671
No log 3.1765 54 0.7859 0.5949 0.7859
No log 3.2941 56 0.8844 0.5560 0.8842
No log 3.4118 58 0.9141 0.5516 0.9137
No log 3.5294 60 0.7828 0.5943 0.7825
No log 3.6471 62 0.7194 0.6082 0.7191
No log 3.7647 64 0.7235 0.6070 0.7233
No log 3.8824 66 0.7606 0.5926 0.7604
No log 4.0 68 0.9394 0.5299 0.9388
No log 4.1176 70 0.9642 0.5092 0.9636
No log 4.2353 72 0.7479 0.5973 0.7477
No log 4.3529 74 0.6642 0.6133 0.6642
No log 4.4706 76 0.6706 0.6129 0.6705
No log 4.5882 78 0.7184 0.6006 0.7183
No log 4.7059 80 0.7525 0.5921 0.7523
No log 4.8235 82 0.7429 0.5934 0.7428
No log 4.9412 84 0.7555 0.5857 0.7554
No log 5.0588 86 0.7166 0.5978 0.7165
No log 5.1765 88 0.7034 0.5949 0.7033
No log 5.2941 90 0.7179 0.5869 0.7178
No log 5.4118 92 0.8419 0.5574 0.8416
No log 5.5294 94 0.9040 0.5229 0.9037
No log 5.6471 96 0.8841 0.5357 0.8839
No log 5.7647 98 0.7383 0.5893 0.7383
No log 5.8824 100 0.6787 0.6146 0.6789
No log 6.0 102 0.6933 0.6105 0.6933
No log 6.1176 104 0.7751 0.5812 0.7749
No log 6.2353 106 0.7938 0.5700 0.7936
No log 6.3529 108 0.7205 0.6067 0.7204
No log 6.4706 110 0.6695 0.6121 0.6695
No log 6.5882 112 0.6759 0.6171 0.6758
No log 6.7059 114 0.6919 0.6099 0.6918
No log 6.8235 116 0.7467 0.5990 0.7465
No log 6.9412 118 0.7453 0.5978 0.7452
No log 7.0588 120 0.7515 0.5967 0.7514
No log 7.1765 122 0.7221 0.6021 0.7221
No log 7.2941 124 0.7307 0.6043 0.7307
No log 7.4118 126 0.7413 0.6043 0.7414
No log 7.5294 128 0.7247 0.6004 0.7249
No log 7.6471 130 0.7088 0.6058 0.7091
No log 7.7647 132 0.7232 0.6037 0.7235
No log 7.8824 134 0.7747 0.5935 0.7748
No log 8.0 136 0.8677 0.5568 0.8676
No log 8.1176 138 0.8769 0.5521 0.8768
No log 8.2353 140 0.8117 0.5845 0.8116
No log 8.3529 142 0.7379 0.5954 0.7379
No log 8.4706 144 0.7203 0.6024 0.7203
No log 8.5882 146 0.7255 0.6036 0.7255
No log 8.7059 148 0.7177 0.6024 0.7177
No log 8.8235 150 0.7099 0.6036 0.7099
No log 8.9412 152 0.7149 0.6036 0.7150
No log 9.0588 154 0.7323 0.5976 0.7323
No log 9.1765 156 0.7453 0.5919 0.7453
No log 9.2941 158 0.7533 0.5901 0.7533
No log 9.4118 160 0.7538 0.5902 0.7538
No log 9.5294 162 0.7490 0.5903 0.7490
No log 9.6471 164 0.7411 0.5952 0.7411
No log 9.7647 166 0.7407 0.5952 0.7407
No log 9.8824 168 0.7383 0.5925 0.7383
No log 10.0 170 0.7387 0.5925 0.7387

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for salbatarni/arabert_cross_organization_task4_fold0

Finetuned
(4222)
this model