arabert_cross_relevance_task7_fold5
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2737
- Qwk: 0.2531
- Mse: 0.2737
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 1.2635 | 0.0075 | 1.2635 |
No log | 0.25 | 4 | 0.4733 | 0.0856 | 0.4733 |
No log | 0.375 | 6 | 0.4780 | 0.1193 | 0.4780 |
No log | 0.5 | 8 | 0.4171 | 0.1125 | 0.4171 |
No log | 0.625 | 10 | 0.3393 | 0.1154 | 0.3393 |
No log | 0.75 | 12 | 0.3133 | 0.0877 | 0.3133 |
No log | 0.875 | 14 | 0.2954 | 0.0958 | 0.2954 |
No log | 1.0 | 16 | 0.2822 | 0.1293 | 0.2822 |
No log | 1.125 | 18 | 0.2616 | 0.1948 | 0.2616 |
No log | 1.25 | 20 | 0.2545 | 0.2304 | 0.2545 |
No log | 1.375 | 22 | 0.2454 | 0.2207 | 0.2454 |
No log | 1.5 | 24 | 0.2508 | 0.2316 | 0.2508 |
No log | 1.625 | 26 | 0.2477 | 0.2028 | 0.2477 |
No log | 1.75 | 28 | 0.2442 | 0.2000 | 0.2442 |
No log | 1.875 | 30 | 0.2513 | 0.2028 | 0.2513 |
No log | 2.0 | 32 | 0.2468 | 0.2138 | 0.2468 |
No log | 2.125 | 34 | 0.2358 | 0.2349 | 0.2358 |
No log | 2.25 | 36 | 0.2333 | 0.2259 | 0.2333 |
No log | 2.375 | 38 | 0.2391 | 0.2212 | 0.2391 |
No log | 2.5 | 40 | 0.2305 | 0.2355 | 0.2305 |
No log | 2.625 | 42 | 0.2393 | 0.2837 | 0.2393 |
No log | 2.75 | 44 | 0.2395 | 0.2837 | 0.2395 |
No log | 2.875 | 46 | 0.2326 | 0.2838 | 0.2326 |
No log | 3.0 | 48 | 0.2323 | 0.2435 | 0.2323 |
No log | 3.125 | 50 | 0.2326 | 0.2723 | 0.2326 |
No log | 3.25 | 52 | 0.2331 | 0.2723 | 0.2331 |
No log | 3.375 | 54 | 0.2328 | 0.2800 | 0.2328 |
No log | 3.5 | 56 | 0.2397 | 0.2677 | 0.2397 |
No log | 3.625 | 58 | 0.2444 | 0.2503 | 0.2444 |
No log | 3.75 | 60 | 0.2477 | 0.2371 | 0.2477 |
No log | 3.875 | 62 | 0.2481 | 0.2355 | 0.2481 |
No log | 4.0 | 64 | 0.2561 | 0.2148 | 0.2561 |
No log | 4.125 | 66 | 0.2682 | 0.2101 | 0.2682 |
No log | 4.25 | 68 | 0.2759 | 0.1725 | 0.2759 |
No log | 4.375 | 70 | 0.2719 | 0.1665 | 0.2719 |
No log | 4.5 | 72 | 0.2545 | 0.2022 | 0.2545 |
No log | 4.625 | 74 | 0.2459 | 0.2488 | 0.2459 |
No log | 4.75 | 76 | 0.2442 | 0.2674 | 0.2442 |
No log | 4.875 | 78 | 0.2574 | 0.2183 | 0.2574 |
No log | 5.0 | 80 | 0.2695 | 0.2133 | 0.2695 |
No log | 5.125 | 82 | 0.2908 | 0.2237 | 0.2908 |
No log | 5.25 | 84 | 0.2741 | 0.2523 | 0.2741 |
No log | 5.375 | 86 | 0.2535 | 0.2795 | 0.2535 |
No log | 5.5 | 88 | 0.2511 | 0.2795 | 0.2511 |
No log | 5.625 | 90 | 0.2503 | 0.2680 | 0.2503 |
No log | 5.75 | 92 | 0.2516 | 0.2536 | 0.2516 |
No log | 5.875 | 94 | 0.2541 | 0.2575 | 0.2541 |
No log | 6.0 | 96 | 0.2541 | 0.2575 | 0.2541 |
No log | 6.125 | 98 | 0.2569 | 0.2609 | 0.2569 |
No log | 6.25 | 100 | 0.2577 | 0.2609 | 0.2577 |
No log | 6.375 | 102 | 0.2619 | 0.2609 | 0.2619 |
No log | 6.5 | 104 | 0.2736 | 0.2575 | 0.2736 |
No log | 6.625 | 106 | 0.2782 | 0.2575 | 0.2782 |
No log | 6.75 | 108 | 0.2718 | 0.2793 | 0.2718 |
No log | 6.875 | 110 | 0.2666 | 0.2575 | 0.2666 |
No log | 7.0 | 112 | 0.2601 | 0.2575 | 0.2601 |
No log | 7.125 | 114 | 0.2517 | 0.2605 | 0.2517 |
No log | 7.25 | 116 | 0.2515 | 0.2641 | 0.2515 |
No log | 7.375 | 118 | 0.2527 | 0.2641 | 0.2527 |
No log | 7.5 | 120 | 0.2579 | 0.2565 | 0.2579 |
No log | 7.625 | 122 | 0.2612 | 0.2644 | 0.2612 |
No log | 7.75 | 124 | 0.2592 | 0.2644 | 0.2592 |
No log | 7.875 | 126 | 0.2572 | 0.2682 | 0.2572 |
No log | 8.0 | 128 | 0.2594 | 0.2682 | 0.2594 |
No log | 8.125 | 130 | 0.2600 | 0.2682 | 0.2600 |
No log | 8.25 | 132 | 0.2633 | 0.2609 | 0.2633 |
No log | 8.375 | 134 | 0.2691 | 0.2496 | 0.2691 |
No log | 8.5 | 136 | 0.2714 | 0.2426 | 0.2714 |
No log | 8.625 | 138 | 0.2651 | 0.2609 | 0.2651 |
No log | 8.75 | 140 | 0.2593 | 0.2682 | 0.2593 |
No log | 8.875 | 142 | 0.2587 | 0.2682 | 0.2587 |
No log | 9.0 | 144 | 0.2587 | 0.2682 | 0.2587 |
No log | 9.125 | 146 | 0.2620 | 0.2682 | 0.2620 |
No log | 9.25 | 148 | 0.2666 | 0.2570 | 0.2666 |
No log | 9.375 | 150 | 0.2697 | 0.2570 | 0.2697 |
No log | 9.5 | 152 | 0.2714 | 0.2570 | 0.2714 |
No log | 9.625 | 154 | 0.2724 | 0.2531 | 0.2724 |
No log | 9.75 | 156 | 0.2735 | 0.2458 | 0.2735 |
No log | 9.875 | 158 | 0.2736 | 0.2531 | 0.2736 |
No log | 10.0 | 160 | 0.2737 | 0.2531 | 0.2737 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for salbatarni/arabert_cross_relevance_task7_fold5
Base model
aubmindlab/bert-base-arabertv02