File size: 13,281 Bytes
9ba8455
 
0b1aeb4
 
 
 
 
 
 
 
 
 
a7bd71a
 
f48cbb6
0f05ab2
 
f48cbb6
 
a7bd71a
4d3013c
a7bd71a
f48cbb6
0f05ab2
f48cbb6
a7bd71a
ae8ec45
a7bd71a
 
 
 
 
0f05ab2
a7bd71a
 
 
 
f48cbb6
a7bd71a
 
f48cbb6
9ec8ba5
6fc7fc1
f48cbb6
c025f22
a7bd71a
 
1e75918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f05ab2
1e75918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bd71a
 
f48cbb6
6ae5e71
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ef354
6ae5e71
 
 
 
 
a7bd71a
e0cb2fe
4dbd174
a7bd71a
 
 
 
 
 
c025f22
a7bd71a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbd174
 
 
 
 
 
 
c025f22
4dbd174
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0cb2fe
 
 
 
 
 
 
 
 
5237168
e0cb2fe
5237168
e0cb2fe
 
 
5237168
e0cb2fe
5237168
e0cb2fe
 
 
128163a
e0cb2fe
5237168
e0cb2fe
 
 
 
 
f48cbb6
c025f22
a7bd71a
f3cd592
57d542a
a7bd71a
 
57d542a
a7bd71a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
license: llama3
language:
- en
- ko
pipeline_tag: text-generation
tags:
- saltlux
- luxia
- meta
- llama-3
- pytorch
---

# Model Details
Saltlux, AI Labs ์–ธ์–ด๋ชจ๋ธํŒ€์—์„œ ํ•™์Šต ๋ฐ ๊ณต๊ฐœํ•œ <b>Ko-Llama3-Luxia-8B</b> ๋ชจ๋ธ์€ Meta์—์„œ ์ถœ์‹œํ•œ Llama-3-8B ๋ชจ๋ธ์„ <b>ํ•œ๊ตญ์–ด์— ํŠนํ™”</b>ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br><br>
์ž์ฒด ๋ณด์œ ํ•˜๊ณ  ์žˆ๋Š” 1TB ์ด์ƒ์˜ ํ•œ๊ตญ์–ด ํ•™์Šต ๋ฐ์ดํ„ฐ ์ค‘, ์•ฝ 100GB ์ •๋„์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ๋ณ„ํ•˜์—ฌ ์‚ฌ์ „ํ•™์Šต์— ํ™œ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค.<br><br>
๋˜ํ•œ ๊ณต๊ฐœ๋œ Llama-3 Tokenizer๋ฅผ ํ•œ๊ตญ์–ด๋กœ ํ™•์žฅํ•˜๊ณ  ์‚ฌ์ „ํ•™์Šต์— ํ™œ์šฉํ–ˆ์Šต๋‹ˆ๋‹ค.

- **Meta Llama-3:** Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
- **License:** Llama3 License [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)

### Intended Use
Ko-Llama3-Luxia-8B๋Š” ์—ฐ๊ตฌ์šฉ์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด ์ƒ์„ฑ ํƒœ์Šคํฌ๋ฅผ ์œ„ํ•ด ์ž์œ ๋กญ๊ฒŒ ํ•™์Šต ๋ฐ ํ™œ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.
 
### How to Use
ํ•ด๋‹น ๋ชจ๋ธ ์นด๋“œ์—๋Š” `Ko-Llama3-Luxia-8B` ๋ชจ๋ธ๊ณผ transformers ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ๊ธฐ๋ฐ˜์˜ ์˜ˆ์‹œ ์ฝ”๋“œ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.

```
import transformers
import torch

model_id = "saltlux/Ko-Llama3-Luxia-8B"

pipeline = transformers.pipeline(
    "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto"
)
pipeline("<|begin_of_text|>์•ˆ๋…•ํ•˜์„ธ์š”. ์†”ํŠธ๋ฃฉ์Šค AI Labs ์ž…๋‹ˆ๋‹ค.")

```
# Training Details
ํ•œ๊ตญ์–ด ํŠนํ™”๋ฅผ ์œ„ํ•œ ์‚ฌ์ „ํ•™์Šต ๋ฐ์ดํ„ฐ๋Š” Saltlux์—์„œ ๋ณด์œ ํ•œ ๋‰ด์Šค, ๋ฒ•๋ฅ , ํŠนํ—ˆ, ์˜๋ฃŒ, ์—ญ์‚ฌ, ์‚ฌํšŒ, ๋ฌธํ™”, ๋Œ€ํ™”(๋ฌธ์–ด/๊ตฌ์–ด) ๋“ฑ์˜ ๋„๋ฉ”์ธ์œผ๋กœ ๊ตฌ์„ฑ๋œ 100GB ์ˆ˜์ค€์˜ ์ฝ”ํผ์Šค(~2023๋…„)๋ฅผ ํ™œ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค.<br>
- ํ˜„์žฌ ์ œ๊ณต๋˜๋Š” ๋ชจ๋ธ์€ 1 Epoch ํ•™์Šต๋œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br>
### Use Device
์‚ฌ์ „ํ•™์Šต์€ NVIDIA H100 80GB * 8EA ์žฅ๋น„๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

#### Training Hyperparameters
<table>
	<tr>
		<td><strong>Model</strong>
		</td>
		<td><strong>Params</strong>
		</td>
		<td><strong>Context length</strong>
		</td>
		<td><strong>GQA</strong>
		</td>
		<td><strong>Learning rate</strong>
		</td>
		<td><strong>Batch</strong>
		</td>
		<td><strong>Precision</strong>
		</td>
	</tr>
  <tr>
	  <td>Ko-Llama3-Luxia-8B
	  </td>
	  <td>8B
	  </td>
	  <td>8k
	  </td>
	  <td>yes
	  </td>
	  <td>1e-5
	  </td>
	  <td>128
	  </td>
	  <td>bf16
	  </td>
	</tr>
</table>

### Tokenizer
Llama-3-Tokenizer๋ฅผ ํ•œ๊ตญ์–ด ํŠนํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํ•œ๊ตญ์–ด ํ† ํฐ 17,536๊ฐœ๋ฅผ ์ถ”๊ฐ€ํ•˜๊ณ  ํ™œ์šฉํ•˜์˜€์Šต๋‹ˆ๋‹ค.
<table>
	<tr>
		<td><strong>Model</strong>
		</td>
		<td><strong>Vocab Size</strong>
		</td>
	</tr>
  <tr>
	  <td>Llama-3
	  </td>
	  <td>128,256
	  </td>
	</tr>
	  <tr>
	  <td>Ko-Llama3-Luxia-8B
	  </td>
	  <td>145,792
	  </td>
	</tr>
</table>

### Tokenizer Result
+ Ko
<table>
	<tr>
		<td><strong>์ž…๋ ฅ</strong>
		</td>
		<td><strong>Llama-3</strong>
		</td>
		<td><strong>Ko-Llama3-Luxia-8B</strong>
		</td>
	</tr>
  <tr>
	  <td>์š”์ฆ˜ ๋‚ ์”จ๊ฐ€ ๋„ˆ๋ฌด ์˜ค๋ฝ๊ฐ€๋ฝํ•ด์„œ ์•„์ง๋„ ๊ฒจ์šธ์˜ท์„ ๋ชป์น˜์› ์–ด์š”..
	  </td>
	  <td>['์š”', '์ฆ˜', ' ๋‚ ', '์”จ', '๊ฐ€', ' ๋„ˆ๋ฌด', ' ์˜ค', '๋ฝ', '๊ฐ€', '๋ฝ', 'ํ•ด์„œ', ' ์•„์ง', '๋„', ' ๊ฒจ', '์šธ', '๏ฟฝ', '๏ฟฝ', '์„', ' ๋ชป', '์น˜', '์› ', '์–ด์š”', '..']
	  </td>
	  <td>['์š”์ฆ˜', ' ๋‚ ์”จ', '๊ฐ€', ' ๋„ˆ๋ฌด', ' ์˜ค๋ฝ', '๊ฐ€๋ฝ', 'ํ•ด์„œ', ' ์•„์ง', '๋„', ' ๊ฒจ์šธ', '์˜ท', '์„', ' ๋ชป', '์น˜', '์› ', '์–ด์š”', '..']
	  </td>
	</tr>
	<tr>
		 <td>๋ง›์žˆ๋Š” ๋ฐฅ์„ ๋“œ์…จ์Šต๋‹ˆ๊นŒ? ๋ง›์ด ๊ถ๊ธˆํ•˜๋„ค์š”.
		 </td>
		 <td>['๋ง›', '์žˆ๋Š”', ' ๏ฟฝ', '๏ฟฝ', '์„', ' ๋“œ', '์…จ', '์Šต', '๋‹ˆ๊นŒ', '?', ' ๋ง›', '์ด', ' ๊ถ๊ธˆ', 'ํ•˜', '๋„ค์š”', '.']
		 </td>
		 <td>['๋ง›', '์žˆ๋Š”', ' ๋ฐฅ', '์„', ' ๋“œ์…จ', '์Šต', '๋‹ˆ๊นŒ', '?', ' ๋ง›', '์ด', ' ๊ถ๊ธˆ', 'ํ•˜', '๋„ค์š”', '.']
		 </td>
	</tr>
	<tr>
		 <td>๋Œ€๋ฒ•์›๋ถ€ํ„ฐ ํ•˜๊ธ‰์‹ฌ ํŒ๋ก€๊นŒ์ง€ ์›ํ•˜๋Š” ํŒ๋ก€๋ฅผ ์ฐพ๋Š” ๊ฐ€์žฅ ๋น ๋ฅธ ๋ฐฉ๋ฒ• - ์„œ๋ฉด ๊ฒ€์ƒ‰, ์š”์ฒญ ํŒ๋ก€, ์œ ์‚ฌ ํŒ๋ก€, AI ์ถ”์ฒœ, ํŒ๋ก€ ๋ฐ ๋ฒ•๋ น ๊ฒ€์ƒ‰.
		 </td>
		 <td>['๋Œ€', '๋ฒ•', '์›', '๋ถ€ํ„ฐ', ' ํ•˜', '๊ธ‰', '์‹ฌ', ' ํŒ', '๋ก€', '๊นŒ์ง€', ' ์›', 'ํ•˜๋Š”', ' ํŒ', '๋ก€', '๋ฅผ', ' ์ฐพ', '๋Š”', ' ๊ฐ€์žฅ', ' ๋น ', '๋ฅธ', ' ๋ฐฉ๋ฒ•', ' -', ' ์„œ', '๋ฉด', ' ๊ฒ€์ƒ‰', ',', ' ์š”์ฒญ', ' ํŒ', '๋ก€', ',', ' ์œ ', '์‚ฌ', ' ํŒ', '๋ก€', ',', ' AI', ' ์ถ”์ฒœ', ',', ' ํŒ', '๋ก€', ' ๋ฐ', ' ๋ฒ•', '๋ น', ' ๊ฒ€์ƒ‰', '.']
		 </td>
		 <td>['๋Œ€', '๋ฒ•', '์›', '๋ถ€ํ„ฐ', ' ํ•˜', '๊ธ‰', '์‹ฌ', ' ํŒ๋ก€', '๊นŒ์ง€', ' ์›', 'ํ•˜๋Š”', ' ํŒ๋ก€', '๋ฅผ', ' ์ฐพ', '๋Š”', ' ๊ฐ€์žฅ', ' ๋น ๋ฅธ', ' ๋ฐฉ๋ฒ•', ' -', ' ์„œ๋ฉด', ' ๊ฒ€์ƒ‰', ',', ' ์š”์ฒญ', ' ํŒ๋ก€', ',', ' ์œ ์‚ฌ', ' ํŒ๋ก€', ',', ' AI', ' ์ถ”์ฒœ', ',', ' ํŒ๋ก€', ' ๋ฐ', ' ๋ฒ•๋ น', ' ๊ฒ€์ƒ‰', '.']
		 </td>
	</tr>
	<tr>
		 <td>๋ณธ ๋ฐœ๋ช…์€ ๊ธˆ์†ํŒ์˜ ๋‹ค์ˆ˜ ๋ถ€๋ถ„์„ ์—์นญ์‹œ์ผœ ํŠน์ • ๋ฌด๋Šฌ๋ชจ์–‘์„ ํ˜•์„ฑํ•˜๋Š” ๊ฑด์ถ•์šฉ ๊ธˆ์†์žฌ ์žฅ์‹ํŒ์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๊ฒƒ์— ํŠน์ง•์ด ์žˆ๋‹ค.
		 </td>
		 <td>['๋ณธ', ' ๋ฐœ', '๋ช…', '์€', ' ๊ธˆ', '์†', 'ํŒ', '์˜', ' ๋‹ค', '์ˆ˜', ' ๋ถ€๋ถ„', '์„', ' ์—', '์นญ', '์‹œ', '์ผœ', ' ํŠน', '์ •', ' ๋ฌด', '๏ฟฝ', '๏ฟฝ', '๋ชจ', '์–‘', '์„', ' ํ˜•', '์„ฑ', 'ํ•˜๋Š”', ' ๊ฑด', '์ถ•', '์šฉ', ' ๊ธˆ', '์†', '์žฌ', ' ์žฅ', '์‹', 'ํŒ', '์œผ๋กœ', ' ์ด๋ฃจ', '์–ด์ง„', ' ๊ฒƒ', '์—', ' ํŠน', '์ง•', '์ด', ' ์žˆ๋‹ค', '.']
		 </td>
		 <td>['๋ณธ', ' ๋ฐœ๋ช…', '์€', ' ๊ธˆ์†', 'ํŒ', '์˜', ' ๋‹ค์ˆ˜', ' ๋ถ€๋ถ„', '์„', ' ์—์นญ', '์‹œ', '์ผœ', ' ํŠน์ •', ' ๋ฌด๋Šฌ', '๋ชจ', '์–‘', '์„', ' ํ˜•์„ฑ', 'ํ•˜๋Š”', ' ๊ฑด์ถ•', '์šฉ', ' ๊ธˆ์†', '์žฌ', ' ์žฅ์‹', 'ํŒ', '์œผ๋กœ', ' ์ด๋ฃจ์–ด์ง„', ' ๊ฒƒ', '์—', ' ํŠน์ง•', '์ด', ' ์žˆ๋‹ค', '.']
		 </td>
	</tr>
	<tr>
		 <td>๊ณจ๋‹ค๊ณต์ฆ์€ ์™œ ์ƒ๊ธฐ๋Š”๊ฑฐ์—์š”? ๊ทธ๋ฆฌ๊ณ  ์น˜๋ฃŒํ•˜๋ ค๋ฉด ์–ด๋–ป๊ฒŒํ•ด์•ผํ•˜์ฃ ?
		 </td>
		 <td>['๊ณจ', '๋‹ค', '๊ณต', '์ฆ', '์€', ' ์™œ', ' ์ƒ', '๊ธฐ๋Š”', '๊ฑฐ', '์—', '์š”', '?', ' ๊ทธ๋ฆฌ๊ณ ', ' ์น˜', '๋ฃŒ', 'ํ•˜๋ ค', '๋ฉด', ' ์–ด๋–ป๊ฒŒ', 'ํ•ด์•ผ', 'ํ•˜', '์ฃ ', '?']
		 </td>
		 <td>['๊ณจ', '๋‹ค', '๊ณต์ฆ', '์€', ' ์™œ', ' ์ƒ', '๊ธฐ๋Š”', '๊ฑฐ', '์—', '์š”', '?', ' ๊ทธ๋ฆฌ๊ณ ', ' ์น˜๋ฃŒ', 'ํ•˜๋ ค', '๋ฉด', ' ์–ด๋–ป๊ฒŒ', 'ํ•ด์•ผ', 'ํ•˜', '์ฃ ', '?']
		 </td>
	</tr>
</table>

+ En
<table>
	<tr>
		<td><strong>์ž…๋ ฅ</strong>
		</td>
		<td><strong>Llama-3</strong>
		</td>
		<td><strong>Ko-Llama3-Luxia-8B</strong>
		</td>
	</tr>
	<tr>
		 <td>Korean cuisine, hanguk yori, or hansik, has evolved through centuries of social and political change.
		 </td>
		 <td>['K', 'orean', ' cuisine', ',', ' h', 'angu', 'k', ' y', 'ori', ',', ' or', ' hans', 'ik', ',', ' has', ' evolved', ' through', ' centuries', ' of', ' social', ' and', ' political', ' change', '.']
		 </td>
		 <td>['K', 'orean', ' cuisine', ',', ' h', 'angu', 'k', ' y', 'ori', ',', ' or', ' hans', 'ik', ',', ' has', ' evolved', ' through', ' centuries', ' of', ' social', ' and', ' political', ' change', '.']
		 </td>
	</tr>
		<tr>
		 <td>Son Heung-min is a South Korean professional footballer who plays as a forward for and captains both Premier League club Tottenham Hotspur and the South Korea national team.
		 </td>
		 <td>['Son', ' He', 'ung', '-min', ' is', ' a', ' South', ' Korean', ' professional', ' football', 'er', ' who', ' plays', ' as', ' a', ' forward', ' for', ' and', ' captains', ' both', ' Premier', ' League', ' club', ' Tottenham', ' Hot', 'sp', 'ur', ' and', ' the', ' South', ' Korea', ' national', ' team', '.']
		 </td>
		 <td>['Son', ' He', 'ung', '-min', ' is', ' a', ' South', ' Korean', ' professional', ' football', 'er', ' who', ' plays', ' as', ' a', ' forward', ' for', ' and', ' captains', ' both', ' Premier', ' League', ' club', ' Tottenham', ' Hot', 'sp', 'ur', ' and', ' the', ' South', ' Korea', ' national', ' team', '.']
		 </td>
	</tr>
</table>

### Inference Result
<table>
<tr>
<td><strong>Llama-3</strong>
</td>
<td><strong>Ko-Llama3-Luxia-8B</strong>
</td>
</tr>
<tr>
<td><b>์บ๋ฆฌ๋น„์•ˆ๋ฒ ์ด๋Š” ์šฉ์ธ์—</b> ์œ„์น˜ํ•œ ์บ๋ฆฌ๋น„์•ˆ ๋ฒ ์ด์˜ ๊ณต์‹ ์˜จ๋ผ์ธ ์นด์ง€๋…ธ์ž…๋‹ˆ๋‹ค. ์บ๋ฆฌ๋น„์•ˆ ๋ฒ ์ด๋Š” 1994๋…„๋ถ€ํ„ฐ ์šด์˜๋˜์–ด ์™”์œผ๋ฉฐ, 2005๋…„์— ์˜จ๋ผ์ธ์œผ๋กœ ์˜คํ”ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ์‚ฌ์ดํŠธ๋Š” ์˜๊ตญ์—์„œ ์šด์˜๋˜๋Š” ๋ผ์ด์„ผ์Šค๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ์˜๊ตญ ์ •๋ถ€๊ฐ€ ์Šน์ธํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค.\n์บ๋ฆฌ๋น„์•ˆ ๋ฒ ์ด๋Š” ๋‹ค์–‘ํ•œ ๊ฒŒ์ž„์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์Šฌ๋กฏ ๋จธ์‹ , ๋ธ”๋ž™์žญ, ๋ฃฐ๋ ›, ํฌ์ปค, ๋ฐ”์นด๋ผ ๋“ฑ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ, ์บ๋ฆฌ๋น„์•ˆ ๋ฒ ์ด๋Š” ๋‹ค์–‘ํ•œ ๋ณด๋„ˆ์Šค์™€ ํ”„๋กœ๋ชจ์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์‹ ๊ทœ ํšŒ์›์—๊ฒŒ๋Š” ๊ฐ€์ž… ์‹œ 100% ๋ฐฐํŒ… ๋ณด๋„ˆ์Šค๊ฐ€ ์ฃผ์–ด์ง‘๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋งค์ฃผ๋งˆ๋‹ค ๋‹ค์–‘ํ•œ ์ด๋ฒคํŠธ์™€ ํ”„๋กœ๋ชจ์…˜์ด ์ง„ํ–‰๋ฉ๋‹ˆ๋‹ค.<์ดํ•˜ ์ƒ๋žต>
</td>
<td><b>์บ๋ฆฌ๋น„์•ˆ๋ฒ ์ด๋Š” ์šฉ์ธ์—</b> ์žˆ๋Š” ๋†€์ด๊ณต์›์ธ๋ฐ์š”. ์บ๋ฆฌ๋น„์•ˆ๋ฒ ์ด์˜ ๊ฒฝ์šฐ์—๋Š” ์›Œํ„ฐํŒŒํฌ์™€ ๋†€์ด๊ณต์›์ด ๊ฐ™์ด ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋ž˜์„œ ์—ฌ๋ฆ„์—๋Š” ๋ฌผ๋†€์ด๋ฅผ ์ฆ๊ธฐ๊ณ  ๊ฒจ์šธ์—๋Š” ๋ˆˆ์ฐ๋งค๋ฅผ ํƒˆ ์ˆ˜ ์žˆ์–ด์„œ ์‚ฌ๊ณ„์ ˆ ๋‚ด๋‚ด ์ฆ๊ธธ ์ˆ˜ ์žˆ๋Š” ๊ณณ์ด์ฃ .\n์บ๋ฆฌ๋น„์•ˆ๋ฒ ์ด๋ฅผ ์ด์šฉํ•˜๋ ค๋ฉด ์šฐ์„  ํ™ˆํŽ˜์ด์ง€์—์„œ ์ž…์žฅ๊ถŒ์„ ๊ตฌ๋งคํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์บ๋ฆฌ๋น„์•ˆ๋ฒ ์ด์˜ ๊ฒฝ์šฐ์—๋Š” 1๋…„ ๋™์•ˆ ์ž์œ ๋กญ๊ฒŒ ์ด์šฉํ•  ์ˆ˜ ์žˆ๋Š” ์—ฐ๊ฐ„ํšŒ์›๊ถŒ๋„ ํŒ๋งคํ•˜๋Š”๋ฐ์š”. ์—ฐ๊ฐ„ํšŒ์›๊ถŒ์€ ์„ฑ์ธ๊ณผ ์–ด๋ฆฐ์ด ๋ชจ๋‘ ๊ตฌ๋งค๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค.<์ดํ•˜ ์ƒ๋žต>
</td>
</tr>
<tr>
<td><b>๋ฒ ํŠธ๋‚จ ์Œ€๊ตญ์ˆ˜๋Š”</b> ํ•œ๊ตญ์˜ ๊ตญ๋ฐฅ๊ณผ ๋น„์Šทํ•œ ์Œ์‹์ž…๋‹ˆ๋‹ค. ๋ฒ ํŠธ๋‚จ ์Œ€๊ตญ์ˆ˜์—๋Š” ์Œ€, ๋ผ์ง€๊ณ ๊ธฐ, ๊ณ„๋ž€, ์–‘ํŒŒ, ๋งˆ๋Š˜, ์ƒ๊ฐ•, ๊ณ ์ถ” ๋“ฑ์ด ๋“ค์–ด๊ฐ‘๋‹ˆ๋‹ค.\n1. ์Œ€์„ ์”ป์–ด ๋ฌผ์— ๋‹ด๊ฐ€ ๋‘ก๋‹ˆ๋‹ค.\n2. ๋ผ์ง€๊ณ ๊ธฐ๋ฅผ ์ž˜๊ฒŒ ์ฐ๊ณ , ์–‘ํŒŒ์™€ ๋งˆ๋Š˜, ์ƒ๊ฐ•, ๊ณ ์ถ”๋ฅผ ๋‹ค์ ธ์ค๋‹ˆ๋‹ค.\n3. ํŒฌ์— ๊ธฐ๋ฆ„์„ ๋‘๋ฅด๊ณ  ๋ผ์ง€๊ณ ๊ธฐ๋ฅผ ๋ณถ๋‹ค๊ฐ€ ์–‘ํŒŒ์™€ ๋งˆ๋Š˜, ์ƒ๊ฐ•, ๊ณ ์ถ”๋ฅผ ๋„ฃ์Šต๋‹ˆ๋‹ค.\n4. ๊ณ„๋ž€์„ ํ’€์–ด์„œ ๋„ฃ๊ณ , ๊ฐ„์žฅ์„ ๋„ฃ์–ด ๋ณถ์•„์ค๋‹ˆ๋‹ค.\n5. ์Œ€์„ ๋ฌผ์— ๋ถˆ๋ ค์„œ ๋„ฃ๊ณ , ๋“์œผ๋ฉด ์†Œ๊ธˆ๊ณผ ํ›„์ถ”๋ฅผ ๋„ฃ์–ด์ค๋‹ˆ๋‹ค.\n6. ์Œ€๊ตญ์ˆ˜๋ฅผ ๋จน๊ธฐ ์ข‹์€ ์ƒํƒœ๊ฐ€ ๋˜๋ฉด ๊บผ๋‚ด ์ค๋‹ˆ๋‹ค.\n7. ์Œ€๊ตญ์ˆ˜์˜ ์œ„์— ๋ผ์ง€๊ณ ๊ธฐ์™€ ๊ณ„๋ž€์„ ์–น์–ด ๋จน์Šต๋‹ˆ๋‹ค.\nVietnamese rice noodles are similar to Korean rice porridge. Vietnamese rice noodles contain rice, pork, eggs, onions, garlic, ginger and chili peppers.<์ดํ•˜ ์ƒ๋žต>
</td>
<td><b>๋ฒ ํŠธ๋‚จ ์Œ€๊ตญ์ˆ˜๋Š”</b> ์ผ๋ฐ˜์ ์œผ๋กœ ์–‡๊ฒŒ ์ฌ ์Œ€๊ฐ€๋ฃจ๋กœ ๋งŒ๋“  ๋ฉด์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ฉด์€ ๋œจ๊ฑฐ์šด ๋ฌผ์— ์‚ถ์•„์„œ ์ฐฌ๋ฌผ์— ํ—น๊ตฌ์–ด๋ƒ…๋‹ˆ๋‹ค. ๋ฉด์ด ์‚ถ์•„์ง€๋ฉด ์œก์ˆ˜์™€ ์•ผ์ฑ„๋ฅผ ๋„ฃ๊ณ  ๋“์ž…๋‹ˆ๋‹ค. ์œก์ˆ˜๋ฅผ ๋งŒ๋“ค ๋•Œ๋Š” ๋‹ญ๊ณ ๊ธฐ, ์†Œ๊ณ ๊ธฐ, ๋ผ์ง€๊ณ ๊ธฐ ๋“ฑ ๋‹ค์–‘ํ•œ ์žฌ๋ฃŒ๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์•ผ์ฑ„๋กœ๋Š” ๋‹น๊ทผ, ์–‘ํŒŒ, ํŒŒ ๋“ฑ์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.<์ดํ•˜ ์ƒ๋žต>
</td>
</tr>
<tr>
<td><b>ํ•œ๊ตญ์˜ ์ „ํ†ต์˜์ƒ์ธ</b> ํ•œ๋ณต๊ณผ ์ผ๋ณธ์˜ ์ „ํ†ต์˜์ƒ์ธ ์š”๋กœ์นด๋ฏธ๋Š” ๋ชจ๋‘ 5๋Œ€๋ฅ™์˜ ๋ฌธํ™”๋ฅผ ์ˆ˜์šฉํ•˜๊ณ , ๊ฐ๊ธฐ ๋‹ค๋ฅธ ์ง€์—ญ์˜ ํŠน์ง•์„ ๋ฐ˜์˜ํ•œ ์˜์ƒ์„ ๊ฐ–์ถ”๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜์ƒ์˜ ํŠน์ง•์€ ๊ฐ๊ฐ์˜ ๊ตญ๊ฐ€์—์„œ ๋ฐœ์ „ํ•ด ์˜จ ์—ญ์‚ฌ์™€ ๋ฌธํ™”์— ๊ธฐ์ดˆํ•œ๋‹ค. ํ•œํŽธ, ํ•œ๊ตญ์˜ ํ•œ๋ณต๊ณผ ์ผ๋ณธ์˜ ์š”๋กœ์นด๋ฏธ๋Š” ์„œ๋กœ ๋น„์Šทํ•œ ํ˜•ํƒœ๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์ง€๋งŒ, ๊ทธ ์˜๋ฏธ๋Š” ๋‹ค๋ฅด๋‹ค. ํ•œ๋ณต์€ ํ•œ๊ตญ์ธ์˜ ์ •์ฒด์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋ฉฐ, ์š”๋กœ์นด๋ฏธ๋Š” ์ผ๋ณธ์ธ์˜ ์ •์ฒด์„ฑ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ๋”ฐ๋ผ์„œ ์ด ๋‘ ๊ฐ€์ง€ ์˜์ƒ์€ ์„œ๋กœ ๋‹ค๋ฅธ ๋ฌธํ™”์  ๋ฐฐ๊ฒฝ์„ ๊ฐ€์ง„ ์‚ฌ๋žŒ๋“ค์˜ ์ •์ฒด์„ฑ ํ‘œํ˜„์— ์‚ฌ์šฉ๋œ๋‹ค.\nThe traditional costumes of Korea and Japan are hanbok and yorokami respectively. Both have been influenced by the cultures of other countries and reflect the characteristics of their respective regions. The distinctive features of these costumes are based on the history and culture of each country. However, although hanbok and yorokami share similar forms, they have different meanings. Hanbok represents Korean identity while yorokami represents Japanese identity. <์ดํ•˜ ์ƒ๋žต>
</td>
<td><b>ํ•œ๊ตญ์˜ ์ „ํ†ต์˜์ƒ์ธ</b> ํ•œ๋ณต์€ ํ•œ๊ตญ์˜ ๋ฌธํ™”๋ฅผ ๋Œ€ํ‘œํ•˜๋Š” ์ƒ์ง•๋ฌผ์ด๋‹ค. ํ•˜์ง€๋งŒ ์ตœ๊ทผ์—๋Š” ํ•œ๋ณต์„ ์ž…๋Š” ์‚ฌ๋žŒ๋“ค์ด ์ ์  ์ค„์–ด๋“ค๊ณ  ์žˆ๋‹ค. ์ด๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ์ด์œ ๊ฐ€ ์žˆ๊ฒ ์ง€๋งŒ, ๊ทธ ์ค‘ ํ•˜๋‚˜๋Š” ํ•œ๋ณต์ด ๋ถˆํŽธํ•˜๊ธฐ ๋•Œ๋ฌธ์ผ ๊ฒƒ์ด๋‹ค. ํ•œ๋ณต์€ ์ผ๋ฐ˜์ ์ธ ์˜ท๋ณด๋‹ค ๋” ๋งŽ์€ ๋ถ€๋ถ„์„ ๋ฎ์–ด์•ผ ํ•˜๊ณ , ์›€์ง์ด๊ธฐ ์–ด๋ ต๋‹ค. ๋˜ํ•œ, ํ•œ๋ณต์€ ์„ธํƒํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๊ณ , ๊ด€๋ฆฌํ•˜๊ธฐ๋„ ์‰ฝ์ง€ ์•Š๋‹ค.\nํ•˜์ง€๋งŒ ํ•œ๋ณต์€ ๋‹จ์ˆœํžˆ ๋ถˆํŽธํ•˜๊ณ  ๊ด€๋ฆฌํ•˜๊ธฐ ์–ด๋ ค์šด ์˜ท์ด ์•„๋‹ˆ๋‹ค. ํ•œ๋ณต์€ ํ•œ๊ตญ์ธ์˜ ์—ญ์‚ฌ์™€ ๋ฌธํ™”๋ฅผ ๋‹ด๊ณ  ์žˆ๋Š” ์†Œ์ค‘ํ•œ ๋ฌธํ™”์œ ์‚ฐ์ด๋‹ค. ํ•œ๋ณต์€ ํ•œ๊ตญ์˜ ์ „ํ†ต๊ณผ ๋ฏธ๋ฅผ ํ‘œํ˜„ํ•˜๋Š” ์ค‘์š”ํ•œ ์ˆ˜๋‹จ์ด๋ฉฐ, ํ•œ๊ตญ์˜ ์ •์ฒด์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ์ƒ์ง•๋ฌผ์ด๋‹ค. ๋”ฐ๋ผ์„œ ์šฐ๋ฆฌ๋Š” ํ•œ๋ณต์„ ๋ณด์กดํ•˜๊ณ  ๊ณ„์Šนํ•ด์•ผ ํ•œ๋‹ค.<์ดํ•˜ ์ƒ๋žต>
</td>
</tr>
</table>


### Citation instructions
**Ko-Llama3-Luxia-8B**
```
@article{kollama3luxiamodelcard,
  title={Ko Llama 3 Luxia Model Card},
  author={AILabs@Saltux},
  year={2024},
  url={https://huggingface.co/saltlux/Ko-Llama3-Luxia-8B/blob/main/README.md}
}
```

**Original Llama-3**
```
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url={https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
```