Edit model card

t5-base-qlora-finetune-tweetsumm-1724817707

This model is a fine-tuned version of google-t5/t5-base on the Andyrasika/TweetSumm-tuned dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7934
  • Rouge1: 0.4708
  • Rouge2: 0.2246
  • Rougel: 0.3984
  • Rougelsum: 0.4357
  • Gen Len: 49.4091
  • F1: 0.8942
  • Precision: 0.8941
  • Recall: 0.8945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len F1 Precision Recall
2.062 1.0 110 1.8472 0.4633 0.2177 0.3919 0.428 49.7273 0.8911 0.8897 0.8927
1.7853 2.0 220 1.8120 0.4633 0.2203 0.3941 0.4285 49.4273 0.8953 0.8945 0.8963
1.5952 3.0 330 1.7934 0.4708 0.2246 0.3984 0.4357 49.4091 0.8942 0.8941 0.8945

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for samuellimabraz/t5-base-qlora-finetune-tweetsumm

Base model

google-t5/t5-base
Adapter
(38)
this model

Dataset used to train samuellimabraz/t5-base-qlora-finetune-tweetsumm

Evaluation results