|
--- |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Andyrasika/TweetSumm-tuned |
|
metrics: |
|
- rouge |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: t5-small-Full-TweetSumm-1724699443 |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: Andyrasika/TweetSumm-tuned |
|
type: Andyrasika/TweetSumm-tuned |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 0.4576 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8917 |
|
- name: Precision |
|
type: precision |
|
value: 0.8901 |
|
- name: Recall |
|
type: recall |
|
value: 0.8936 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-Full-TweetSumm-1724699443 |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the Andyrasika/TweetSumm-tuned dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.9954 |
|
- Rouge1: 0.4576 |
|
- Rouge2: 0.2129 |
|
- Rougel: 0.3814 |
|
- Rougelsum: 0.4246 |
|
- Gen Len: 49.4636 |
|
- F1: 0.8917 |
|
- Precision: 0.8901 |
|
- Recall: 0.8936 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|:---------:|:------:| |
|
| 2.3321 | 1.0 | 110 | 2.0722 | 0.462 | 0.2119 | 0.3832 | 0.429 | 49.4818 | 0.8916 | 0.8905 | 0.893 | |
|
| 2.0488 | 2.0 | 220 | 2.0052 | 0.453 | 0.2025 | 0.3721 | 0.4167 | 49.5727 | 0.8912 | 0.8889 | 0.8938 | |
|
| 1.7205 | 3.0 | 330 | 1.9954 | 0.4576 | 0.2129 | 0.3814 | 0.4246 | 49.4636 | 0.8917 | 0.8901 | 0.8936 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|