A demo for generating text using Tibetan Roberta Causal Language Model

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model_name = 'sangjeedondrub/tibetan-roberta-causal-base'
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

text_gen_pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer
)

init_text = 'རིན་'

outputs = text_gen_pipe(init_text,
              do_sample=True,
              max_new_tokens=200,
              temperature=.9,
              top_k=10,
              top_p=0.92,
              num_return_sequences=10,
              truncate=True)
for idx, output in enumerate(outputs, start=1):
  print(idx)
  print(output['generated_text'])

About

This model is trained and released by Sangjee Dondrub [sangjeedondrub at live dot com], the mere purpose of conducting these experiments is to improve my familiarity with Transformers APIs.

Downloads last month
19
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for sangjeedondrub/tibetan-roberta-causal-base

Finetunes
1 model