sanketrai's picture
End of training
ad70059 verified
metadata
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-base
tags:
  - generated_from_trainer
datasets:
  - wnut_17
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: modernbert-base-wnut17-english-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wnut_17
          type: wnut_17
          config: wnut_17
          split: test
          args: wnut_17
        metrics:
          - name: Precision
            type: precision
            value: 0.5518248175182482
          - name: Recall
            type: recall
            value: 0.35032437442076
          - name: F1
            type: f1
            value: 0.4285714285714286
          - name: Accuracy
            type: accuracy
            value: 0.9457125758741558

modernbert-base-wnut17-english-ner

This model is a fine-tuned version of answerdotai/ModernBERT-base on the wnut_17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5510
  • Precision: 0.5518
  • Recall: 0.3503
  • F1: 0.4286
  • Accuracy: 0.9457

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 107 0.3280 0.2601 0.0778 0.1198 0.9292
No log 2.0 214 0.2790 0.5609 0.2048 0.3001 0.9377
No log 3.0 321 0.2860 0.4403 0.2595 0.3265 0.9394
No log 4.0 428 0.3018 0.4534 0.3698 0.4074 0.9442
0.1707 5.0 535 0.3328 0.4742 0.3661 0.4132 0.9445
0.1707 6.0 642 0.4206 0.5119 0.3401 0.4087 0.9445
0.1707 7.0 749 0.4242 0.5238 0.3364 0.4097 0.9449
0.1707 8.0 856 0.4635 0.5624 0.3133 0.4024 0.9447
0.1707 9.0 963 0.4705 0.5432 0.3494 0.4253 0.9461
0.0052 10.0 1070 0.4557 0.4962 0.3652 0.4207 0.9456
0.0052 11.0 1177 0.5900 0.5956 0.3234 0.4192 0.9448
0.0052 12.0 1284 0.5206 0.5701 0.3429 0.4282 0.9456
0.0052 13.0 1391 0.5535 0.5805 0.3309 0.4215 0.9455
0.0052 14.0 1498 0.5098 0.5297 0.3559 0.4257 0.9457
0.0011 15.0 1605 0.5543 0.5681 0.3401 0.4255 0.9457
0.0011 16.0 1712 0.5394 0.5512 0.3494 0.4277 0.9456
0.0011 17.0 1819 0.5492 0.5577 0.3448 0.4261 0.9457
0.0011 18.0 1926 0.5412 0.5489 0.3540 0.4304 0.9458
0.0008 19.0 2033 0.5472 0.5485 0.3513 0.4282 0.9456
0.0008 20.0 2140 0.5510 0.5518 0.3503 0.4286 0.9457

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0