|
--- |
|
language: |
|
- en |
|
tags: |
|
- relik |
|
--- |
|
|
|
<div align="center"> |
|
<img src="https://github.com/SapienzaNLP/relik/blob/main/relik.png?raw=true" height="150"> |
|
<img src="https://github.com/SapienzaNLP/relik/blob/main/Sapienza_Babelscape.png?raw=true" height="50"> |
|
</div> |
|
|
|
<div align="center"> |
|
<h1>Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget</h1> |
|
</div> |
|
|
|
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;"> |
|
<a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a> |
|
<a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a> |
|
<a href="https://arxiv.org/abs/2408.00103"><img src="https://img.shields.io/badge/arXiv-2408.00103-b31b1b.svg"></a> |
|
</div> |
|
<div style="display:flex; justify-content: center; align-items: center; flex-direction: row;"> |
|
<a href="https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> |
|
<a href="https://github.com/SapienzaNLP/relik"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a> |
|
<a href="https://github.com/SapienzaNLP/relik/releases"><img src="https://img.shields.io/github/v/release/SapienzaNLP/relik"></a> |
|
</div> |
|
|
|
|
|
A blazing fast and lightweight Information Extraction model for **Entity Linking** and **Relation Extraction**. |
|
|
|
## π οΈ Installation |
|
|
|
Installation from PyPI |
|
|
|
```bash |
|
pip install relik |
|
``` |
|
|
|
<details> |
|
<summary>Other installation options</summary> |
|
|
|
#### Install with optional dependencies |
|
|
|
Install with all the optional dependencies. |
|
|
|
```bash |
|
pip install relik[all] |
|
``` |
|
|
|
Install with optional dependencies for training and evaluation. |
|
|
|
```bash |
|
pip install relik[train] |
|
``` |
|
|
|
Install with optional dependencies for [FAISS](https://github.com/facebookresearch/faiss) |
|
|
|
FAISS PyPI package is only available for CPU. For GPU, install it from source or use the conda package. |
|
|
|
For CPU: |
|
|
|
```bash |
|
pip install relik[faiss] |
|
``` |
|
|
|
For GPU: |
|
|
|
```bash |
|
conda create -n relik python=3.10 |
|
conda activate relik |
|
|
|
# install pytorch |
|
conda install -y pytorch=2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia |
|
|
|
# GPU |
|
conda install -y -c pytorch -c nvidia faiss-gpu=1.8.0 |
|
# or GPU with NVIDIA RAFT |
|
conda install -y -c pytorch -c nvidia -c rapidsai -c conda-forge faiss-gpu-raft=1.8.0 |
|
|
|
pip install relik |
|
``` |
|
|
|
Install with optional dependencies for serving the models with |
|
[FastAPI](https://fastapi.tiangolo.com/) and [Ray](https://docs.ray.io/en/latest/serve/quickstart.html). |
|
|
|
```bash |
|
pip install relik[serve] |
|
``` |
|
|
|
#### Installation from source |
|
|
|
```bash |
|
git clone https://github.com/SapienzaNLP/relik.git |
|
cd relik |
|
pip install -e .[all] |
|
``` |
|
|
|
</details> |
|
|
|
## π Quick Start |
|
|
|
[//]: # (Write a short description of the model and how to use it with the `from_pretrained` method.) |
|
|
|
ReLiK is a lightweight and fast model for **Entity Linking** and **Relation Extraction**. |
|
It is composed of two main components: a retriever and a reader. |
|
The retriever is responsible for retrieving relevant documents from a large collection, |
|
while the reader is responsible for extracting entities and relations from the retrieved documents. |
|
ReLiK can be used with the `from_pretrained` method to load a pre-trained pipeline. |
|
|
|
Here is an example of how to use ReLiK for **Relation Extraction**: |
|
|
|
```python |
|
from relik import Relik |
|
from relik.inference.data.objects import RelikOutput |
|
|
|
relik = Relik.from_pretrained("sapienzanlp/relik-relation-extraction-nyt-large") |
|
relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.") |
|
``` |
|
|
|
|
|
RelikOutput( |
|
text='Michael Jordan was one of the best players in the NBA.', |
|
tokens=Michael Jordan was one of the best players in the NBA., |
|
id=0, |
|
spans=[ |
|
Span(start=0, end=14, label='--NME--', text='Michael Jordan'), |
|
Span(start=50, end=53, label='--NME--', text='NBA') |
|
], |
|
triplets=[ |
|
Triplets( |
|
subject=Span(start=0, end=14, label='--NME--', text='Michael Jordan'), |
|
label='company', |
|
object=Span(start=50, end=53, label='--NME--', text='NBA'), |
|
confidence=1.0 |
|
) |
|
], |
|
candidates=Candidates( |
|
span=[], |
|
triplet=[ |
|
[ |
|
[ |
|
{"text": "company", "id": 4, "metadata": {"definition": "company of this person"}}, |
|
{"text": "nationality", "id": 10, "metadata": {"definition": "nationality of this person or entity"}}, |
|
{"text": "child", "id": 17, "metadata": {"definition": "child of this person"}}, |
|
{"text": "founded by", "id": 0, "metadata": {"definition": "founder or co-founder of this organization, religion or place"}}, |
|
{"text": "residence", "id": 18, "metadata": {"definition": "place where this person has lived"}}, |
|
... |
|
] |
|
] |
|
] |
|
), |
|
) |
|
|
|
|
|
## π Performance |
|
|
|
The following table shows the results (Micro F1) of ReLiK Large on the NYT dataset: |
|
|
|
| Model | NYT | NYT (Pretr) | AIT (m:s) | |
|
|------------------------------------------|------|-------|------------| |
|
| REBEL | 93.1 | 93.4 | 01:45 | |
|
| UiE | 93.5 | -- | -- | |
|
| USM | 94.0 | 94.1 | -- | |
|
| β‘οΈ [ReLiK<sub>Large<sub>](https://huggingface.co/sapienzanlp/relik-relation-extraction-nyt-large) | **95.0** | **94.9** | 00:30 | |
|
|
|
|
|
## π€ Models |
|
|
|
Models can be found on [π€ Hugging Face](https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19). |
|
|
|
## π½ Cite this work |
|
|
|
If you use any part of this work, please consider citing the paper as follows: |
|
|
|
```bibtex |
|
@inproceedings{orlando-etal-2024-relik, |
|
title = "Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget", |
|
author = "Orlando, Riccardo and Huguet Cabot, Pere-Llu{\'\i}s and Barba, Edoardo and Navigli, Roberto", |
|
booktitle = "Findings of the Association for Computational Linguistics: ACL 2024", |
|
month = aug, |
|
year = "2024", |
|
address = "Bangkok, Thailand", |
|
publisher = "Association for Computational Linguistics", |
|
} |
|
``` |