metadata
language:
- sw
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1115700
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ndege mwenye mdomo mrefu katikati ya ndege.
sentences:
- Panya anayekimbia juu ya gurudumu.
- Mtu anashindana katika mashindano ya mbio.
- Ndege anayeruka.
- source_sentence: >-
Msichana mchanga mwenye nywele nyeusi anakabili kamera na kushikilia mfuko
wa karatasi wakati amevaa shati la machungwa na mabawa ya kipepeo yenye
rangi nyingi.
sentences:
- Mwanamke mzee anakataa kupigwa picha.
- mtu akila na mvulana mdogo kwenye kijia cha jiji
- Msichana mchanga anakabili kamera.
- source_sentence: >-
Wanawake na watoto wameketi nje katika kivuli wakati kikundi cha watoto
wadogo wameketi ndani katika kivuli.
sentences:
- Mwanamke na watoto na kukaa chini.
- Mwanamke huyo anakimbia.
- Watu wanasafiri kwa baiskeli.
- source_sentence: >-
Mtoto mdogo anaruka mikononi mwa mwanamke aliyevalia suti nyeusi ya
kuogelea akiwa kwenye dimbwi.
sentences:
- >-
Mtoto akiruka mikononi mwa mwanamke aliyevalia suti ya kuogelea kwenye
dimbwi.
- Someone is holding oranges and walking
- Mama na binti wakinunua viatu.
- source_sentence: >-
Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu
kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au
wameketi nyuma.
sentences:
- tai huruka
- mwanamume na mwanamke wenye mikoba
- Wanaume wawili wameketi karibu na mwanamke.
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.6831671531193453
name: Pearson Cosine
- type: spearman_cosine
value: 0.677143022633225
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6891948944875336
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6892226446007472
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6916897298195501
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6916850273924392
name: Spearman Euclidean
- type: pearson_dot
value: 0.6418376172951465
name: Pearson Dot
- type: spearman_dot
value: 0.628581703082033
name: Spearman Dot
- type: pearson_max
value: 0.6916897298195501
name: Pearson Max
- type: spearman_max
value: 0.6916850273924392
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 128
type: sts-test-128
metrics:
- type: pearson_cosine
value: 0.6753009254241098
name: Pearson Cosine
- type: spearman_cosine
value: 0.6731049071307844
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6906782473185179
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6927883369656496
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6933649652149252
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.694111832507592
name: Spearman Euclidean
- type: pearson_dot
value: 0.600449101550258
name: Pearson Dot
- type: spearman_dot
value: 0.5857671058687308
name: Spearman Dot
- type: pearson_max
value: 0.6933649652149252
name: Pearson Max
- type: spearman_max
value: 0.694111832507592
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.6546200020168988
name: Pearson Cosine
- type: spearman_cosine
value: 0.6523958945855459
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6837289470688535
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6796775815725002
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6861328219241016
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6815842202083926
name: Spearman Euclidean
- type: pearson_dot
value: 0.5120576666695955
name: Pearson Dot
- type: spearman_dot
value: 0.49141347385563683
name: Spearman Dot
- type: pearson_max
value: 0.6861328219241016
name: Pearson Max
- type: spearman_max
value: 0.6815842202083926
name: Spearman Max
SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5 on the Mollel/swahili-n_li-triplet-swh-eng dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Mollel/swahili-n_li-triplet-swh-eng
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sartifyllc/MultiLinguSwahili-bge-small-en-v1.5-nli-matryoshka")
# Run inference
sentences = [
'Mwanamume na mwanamke wachanga waliovaa mikoba wanaweka au kuondoa kitu kutoka kwenye mti mweupe wa zamani, huku watu wengine wamesimama au wameketi nyuma.',
'mwanamume na mwanamke wenye mikoba',
'tai huruka',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test-256
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6832 |
spearman_cosine | 0.6771 |
pearson_manhattan | 0.6892 |
spearman_manhattan | 0.6892 |
pearson_euclidean | 0.6917 |
spearman_euclidean | 0.6917 |
pearson_dot | 0.6418 |
spearman_dot | 0.6286 |
pearson_max | 0.6917 |
spearman_max | 0.6917 |
Semantic Similarity
- Dataset:
sts-test-128
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6753 |
spearman_cosine | 0.6731 |
pearson_manhattan | 0.6907 |
spearman_manhattan | 0.6928 |
pearson_euclidean | 0.6934 |
spearman_euclidean | 0.6941 |
pearson_dot | 0.6004 |
spearman_dot | 0.5858 |
pearson_max | 0.6934 |
spearman_max | 0.6941 |
Semantic Similarity
- Dataset:
sts-test-64
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6546 |
spearman_cosine | 0.6524 |
pearson_manhattan | 0.6837 |
spearman_manhattan | 0.6797 |
pearson_euclidean | 0.6861 |
spearman_euclidean | 0.6816 |
pearson_dot | 0.5121 |
spearman_dot | 0.4914 |
pearson_max | 0.6861 |
spearman_max | 0.6816 |
Training Details
Training Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 1,115,700 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 15.18 tokens
- max: 80 tokens
- min: 5 tokens
- mean: 18.53 tokens
- max: 52 tokens
- min: 5 tokens
- mean: 17.8 tokens
- max: 53 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Mtu aliyepanda farasi anaruka juu ya ndege iliyovunjika.
Mtu yuko nje, juu ya farasi.
Mtu yuko kwenye mkahawa, akiagiza omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Mollel/swahili-n_li-triplet-swh-eng
- Dataset: Mollel/swahili-n_li-triplet-swh-eng
- Size: 13,168 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 26.43 tokens
- max: 94 tokens
- min: 5 tokens
- mean: 13.37 tokens
- max: 65 tokens
- min: 5 tokens
- mean: 14.7 tokens
- max: 54 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Wanawake wawili wanakumbatiana huku wakishikilia vifurushi vya kwenda.
Wanawake wawili wanashikilia vifurushi.
Wanaume hao wanapigana nje ya duka la vyakula vitamu.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-64_spearman_cosine |
---|---|---|---|---|---|
0.0115 | 100 | 9.6847 | - | - | - |
0.0229 | 200 | 8.5336 | - | - | - |
0.0344 | 300 | 7.768 | - | - | - |
0.0459 | 400 | 7.2049 | - | - | - |
0.0574 | 500 | 6.9425 | - | - | - |
0.0688 | 600 | 7.029 | - | - | - |
0.0803 | 700 | 6.259 | - | - | - |
0.0918 | 800 | 6.0939 | - | - | - |
0.1032 | 900 | 5.991 | - | - | - |
0.1147 | 1000 | 5.39 | - | - | - |
0.1262 | 1100 | 5.3214 | - | - | - |
0.1377 | 1200 | 5.1469 | - | - | - |
0.1491 | 1300 | 4.901 | - | - | - |
0.1606 | 1400 | 5.2725 | - | - | - |
0.1721 | 1500 | 5.077 | - | - | - |
0.1835 | 1600 | 4.8006 | - | - | - |
0.1950 | 1700 | 4.5318 | - | - | - |
0.2065 | 1800 | 4.48 | - | - | - |
0.2180 | 1900 | 4.5752 | - | - | - |
0.2294 | 2000 | 4.427 | - | - | - |
0.2409 | 2100 | 4.4021 | - | - | - |
0.2524 | 2200 | 4.5903 | - | - | - |
0.2639 | 2300 | 4.4561 | - | - | - |
0.2753 | 2400 | 4.372 | - | - | - |
0.2868 | 2500 | 4.2698 | - | - | - |
0.2983 | 2600 | 4.3954 | - | - | - |
0.3097 | 2700 | 4.2697 | - | - | - |
0.3212 | 2800 | 4.125 | - | - | - |
0.3327 | 2900 | 4.3611 | - | - | - |
0.3442 | 3000 | 4.2527 | - | - | - |
0.3556 | 3100 | 4.1892 | - | - | - |
0.3671 | 3200 | 4.0417 | - | - | - |
0.3786 | 3300 | 3.9434 | - | - | - |
0.3900 | 3400 | 3.9797 | - | - | - |
0.4015 | 3500 | 3.9611 | - | - | - |
0.4130 | 3600 | 4.04 | - | - | - |
0.4245 | 3700 | 3.965 | - | - | - |
0.4359 | 3800 | 3.778 | - | - | - |
0.4474 | 3900 | 4.0624 | - | - | - |
0.4589 | 4000 | 3.8972 | - | - | - |
0.4703 | 4100 | 3.7882 | - | - | - |
0.4818 | 4200 | 3.8048 | - | - | - |
0.4933 | 4300 | 3.9253 | - | - | - |
0.5048 | 4400 | 3.9832 | - | - | - |
0.5162 | 4500 | 3.6644 | - | - | - |
0.5277 | 4600 | 3.7353 | - | - | - |
0.5392 | 4700 | 3.7768 | - | - | - |
0.5506 | 4800 | 3.796 | - | - | - |
0.5621 | 4900 | 3.875 | - | - | - |
0.5736 | 5000 | 3.7856 | - | - | - |
0.5851 | 5100 | 3.8898 | - | - | - |
0.5965 | 5200 | 3.6327 | - | - | - |
0.6080 | 5300 | 3.7727 | - | - | - |
0.6195 | 5400 | 3.8582 | - | - | - |
0.6310 | 5500 | 3.729 | - | - | - |
0.6424 | 5600 | 3.7088 | - | - | - |
0.6539 | 5700 | 3.8414 | - | - | - |
0.6654 | 5800 | 3.7624 | - | - | - |
0.6768 | 5900 | 3.8816 | - | - | - |
0.6883 | 6000 | 3.7483 | - | - | - |
0.6998 | 6100 | 3.7759 | - | - | - |
0.7113 | 6200 | 3.6674 | - | - | - |
0.7227 | 6300 | 3.6441 | - | - | - |
0.7342 | 6400 | 3.7779 | - | - | - |
0.7457 | 6500 | 3.6691 | - | - | - |
0.7571 | 6600 | 3.7636 | - | - | - |
0.7686 | 6700 | 3.7424 | - | - | - |
0.7801 | 6800 | 3.4943 | - | - | - |
0.7916 | 6900 | 3.5399 | - | - | - |
0.8030 | 7000 | 3.3658 | - | - | - |
0.8145 | 7100 | 3.2856 | - | - | - |
0.8260 | 7200 | 3.3702 | - | - | - |
0.8374 | 7300 | 3.3121 | - | - | - |
0.8489 | 7400 | 3.2322 | - | - | - |
0.8604 | 7500 | 3.1577 | - | - | - |
0.8719 | 7600 | 3.1873 | - | - | - |
0.8833 | 7700 | 3.1492 | - | - | - |
0.8948 | 7800 | 3.2035 | - | - | - |
0.9063 | 7900 | 3.1607 | - | - | - |
0.9177 | 8000 | 3.1557 | - | - | - |
0.9292 | 8100 | 3.0915 | - | - | - |
0.9407 | 8200 | 3.1335 | - | - | - |
0.9522 | 8300 | 3.14 | - | - | - |
0.9636 | 8400 | 3.1422 | - | - | - |
0.9751 | 8500 | 3.1923 | - | - | - |
0.9866 | 8600 | 3.1085 | - | - | - |
0.9980 | 8700 | 3.089 | - | - | - |
1.0 | 8717 | - | 0.6731 | 0.6771 | 0.6524 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.40.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.29.3
- Datasets: 2.19.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}