metadata
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: I love AutoTrain 🤗
datasets:
- sasha/autotrain-data-BERTBase-imdb
co2_eq_emissions:
emissions: 20.106886369086105
Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 1275748792
- CO2 Emissions (in grams): 20.1069
Validation Metrics
- Loss: 0.233
- Accuracy: 0.904
- Precision: 0.884
- Recall: 0.930
- AUC: 0.968
- F1: 0.907
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/sasha/autotrain-BERTBase-imdb-1275748792
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("sasha/autotrain-BERTBase-imdb-1275748792", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("sasha/autotrain-BERTBase-imdb-1275748792", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)