Edit model card

πŸ’§ Proteus-8B

Proteus-8B is a merge of the following models using Mergekit:

🧩 Configuration

tokenizer_source: union
embed_slerp: true
name: Proteus-8B
models:
  - model: cognitivecomputations/dolphin-2.9-llama3-8b
    parameters:
      density: 0.5
      weight: 0.4
  - model: NousResearch/Hermes-2-Theta-Llama-3-8B
    parameters:
      density: 0.5
      weight: 0.6
merge_method: dare_ties
base_model: NousResearch/Hermes-2-Theta-Llama-3-8B
parameters:
  int8_mask: true
dtype: bfloat16

Eval Results

Benchmark Average arc gsm8k hellaswag mmlu truthfulqa winogrande
openllm 70.67 63.48 78.77 82.94 64.71 56.71 77.43

Detailed Results: https://github.com/saucam/model_evals/blob/main/saucam/Proteus-8B/README.md

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "saucam/Proteus-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
12
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for saucam/Proteus-8B