🔱 Rudra-7b

Rudra-7b is a LoRA fine-tune of gemma-7b on sanskrit data

This is a text-completion model for Sanskrit language. The model was finetuned using unsloth library. I hope this paves the way for future work for Sanskrit models.

Training

Qlora finetuning was used.

Details

  • GPU: 1 H100
  • Time: ~ 29 hours

Data

https://huggingface.co/datasets/saucam/sans_data/blob/main/README.md

💻 Usage

Unsloth

from unsloth import FastLanguageModel

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "saucam/Rudra-7b", # YOUR MODEL YOU USED FOR TRAINING
    max_seq_length = 2048,
    dtype = None,
    load_in_4bit = False,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

inputs = tokenizer(
[
    "संस्कृतम्"
], return_tensors = "pt").to("cuda")


outputs = model.generate(**inputs, max_new_tokens = 256, use_cache = True, repetition_penalty=1.0, temperature=1.0, )
out = tokenizer.batch_decode(outputs)
print(out)

Transformers

!pip install -qU transformers accelerate

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_name = "saucam/Rudra-7b"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

inputs = tokenizer("संस्कृतम्", return_tensors = "pt")#.to("cuda")

outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(tokenizer.decode(outputs[0]))

Sample output from above script

Gemma's activation function should be approximate GeLU and not exact GeLU.
Changing the activation function to `gelu_pytorch_tanh`.if you want to use the legacy `gelu`, edit the `model.config` to set `hidden_activation=gelu`   instead of `hidden_act`. See https://github.com/huggingface/transformers/pull/29402 for more details.
Loading checkpoint shards: 100%|████████████████████████████| 4/4 [00:01<00:00,  2.54it/s]
<bos>संस्कृतम् भारतस्य राष्ट्रभाषा इति भारतसर्वकारस्य 1987तमे वर्षे निर्णयः । प्रायः 125 कोटि जनाः संस्कृतम् एव पठन्ति इति अनुमानम् । संस्कृतम् भारतस्य ध्रुवम् आङ्ग्लानुभाष्यम् । संस्कृतम् अत्यन्तम् प्राचीनम् । संस्कृतम् शैथिल्यात् यदा यदा बहिर्निर्याति तदा तदा एव साम्प्रतकाले संस्कृतेन सह तस्य देशस्य संस्कृतिः सह जगतः संस्कृतिः सह सङ्गच्छति इति । संस्कृतेन सह देशस्य संस्कृतिः सह नगरस्य संस्कृतिः सह क्रीडायाः संस्कृतिः सह राजकीयः, सामाजिकः, सांस्कृतिकः, आर्थिकः, सांविभागिकः, नैतिकः, शिक्षणम्, आवासीयः, साम्प्रदायिकः, धार्मिकः, आध्यात्मिकः, विनोदः, प्रौद्योगिकी, विद्यार्थ
Downloads last month
46
Safetensors
Model size
8.54B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for saucam/Rudra-7b

Merges
1 model
Quantizations
1 model

Dataset used to train saucam/Rudra-7b