File size: 2,350 Bytes
7f70f47
 
 
 
 
 
 
 
a2944d5
 
 
7f70f47
c880046
 
 
 
7f70f47
 
 
a2944d5
 
 
 
 
 
7f70f47
a2944d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: cc
tags:
- tensorflow
- image-to-image
---
# Whitebox Cartoonizer

Whitebox Cartoonizer [1] model in the `SavedModel` format. The model was exported to the SavedModel format using
[this notebook](https://huggingface.co/sayakpaul/whitebox-cartoonizer/blob/main/export-saved-model.ipynb). Original model
repository can be found [here](https://github.com/SystemErrorWang/White-box-Cartoonization).

<p align="center">
  <img src="https://huggingface.co/sayakpaul/whitebox-cartoonizer/resolve/main/output.png"/>
</p>

## Inference code

```py
import cv2
import numpy as np
import requests
import tensorflow as tf
from huggingface_hub import snapshot_download
from PIL import Image


def resize_crop(image):
    h, w, c = np.shape(image)
    if min(h, w) > 720:
        if h > w:
            h, w = int(720 * h / w), 720
        else:
            h, w = 720, int(720 * w / h)
    image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
    h, w = (h // 8) * 8, (w // 8) * 8
    image = image[:h, :w, :]
    return image


def download_image(url):
    image = Image.open(requests.get(url, stream=True).raw)
    image = image.convert("RGB")
    image = np.array(image)
    image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
    return image


def preprocess_image(image):
    image = resize_crop(image)
    image = image.astype(np.float32) / 127.5 - 1
    image = np.expand_dims(image, axis=0)
    image = tf.constant(image)
    return image


# Load the model and extract concrete function.
model_path = snapshot_download("sayakpaul/whitebox-cartoonizer")
loaded_model = tf.saved_model.load(model_path)
concrete_func = loaded_model.signatures["serving_default"]

# Download and preprocess image.
image_url = "https://huggingface.co/spaces/sayakpaul/cartoonizer-demo-onnx/resolve/main/mountain.jpeg"
image = download_image(image_url)
preprocessed_image = preprocess_image(image)

# Run inference.
result = concrete_func(preprocessed_image)["final_output:0"]

# Post-process the result and serialize it.
output = (result[0].numpy() + 1.0) * 127.5
output = np.clip(output, 0, 255).astype(np.uint8)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
output_image = Image.fromarray(output)
output_image.save("result.png")
```

## References

[1] Learning to Cartoonize Using White-box Cartoon Representations; Xinrui Wang and Jinze Yu; CVPR 2020.