RNA-TorsionBERT
Model Description
RNA-TorsionBERT
is a 86.9 MB parameter BERT-based language model that predicts RNA torsional and pseudo-torsional angles from the sequence.
RNA-TorsionBERT
is a DNABERT model that was pre-trained on ~4200 RNA structures.
It provides improvement of MCQ over the previous state-of-the-art models like SPOT-RNA-1D or inferred angles from existing methods, on the Test Set (composed of RNA-Puzzles and CASP-RNA).
Key Features
- Torsional and Pseudo-torsional angles prediction
- Predict sequences up to 512 nucleotides
Usage
Get started generating text with RNA-TorsionBERT
by using the following code snippet:
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("sayby/rna_torsionbert", trust_remote_code=True)
model = AutoModel.from_pretrained("sayby/rna_torsionbert", trust_remote_code=True)
sequence = "ACG CGG GGT GTT"
params_tokenizer = {
"return_tensors": "pt",
"padding": "max_length",
"max_length": 512,
"truncation": True,
}
inputs = tokenizer(sequence, **params_tokenizer)
output = model(inputs)["logits"]
- Please note that it was fine-tuned from a DNABERT-3 model and therefore the tokenizer is the same as the one used for DNABERT. Nucleotide
U
should therefore be replaced byT
in the input sequence. - The output is the sinus and the cosine for each angle. The angles are in the following order:
alpha
,beta
,gamma
,delta
,epsilon
,zeta
,chi
,eta
,theta
,eta'
,theta'
,v0
,v1
,v2
,v3
,v4
.
To convert the predictions into angles, you can use the following code snippet:
import transformers
from transformers import AutoModel, AutoTokenizer
import numpy as np
import pandas as pd
from typing import Optional, Dict
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
transformers.logging.set_verbosity_error()
BACKBONE = [
"alpha",
"beta",
"gamma",
"delta",
"epsilon",
"zeta",
"chi",
"eta",
"theta",
"eta'",
"theta'",
"v0",
"v1",
"v2",
"v3",
"v4",
]
class RNATorsionBERTHelper:
def __init__(self):
self.model_name = "sayby/rna_torsionbert"
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name, trust_remote_code=True
)
self.params_tokenizer = {
"return_tensors": "pt",
"padding": "max_length",
"max_length": 512,
"truncation": True,
}
self.model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True)
def predict(self, sequence: str):
sequence_tok = self.convert_raw_sequence_to_k_mers(sequence)
inputs = self.tokenizer(sequence_tok, **self.params_tokenizer)
outputs = self.model(inputs)["logits"]
outputs = self.convert_sin_cos_to_angles(
outputs.cpu().detach().numpy(), inputs["input_ids"]
)
output_angles = self.convert_logits_to_dict(
outputs[0, :], inputs["input_ids"][0, :].cpu().detach().numpy()
)
output_angles.index = list(sequence)[:-2] # Because of the 3-mer representation
return output_angles
def convert_raw_sequence_to_k_mers(self, sequence: str, k_mers: int = 3):
"""
Convert a raw RNA sequence into sequence readable for the tokenizer.
It converts the sequence into k-mers, and replace U by T
:return: input readable by the tokenizer
"""
sequence = sequence.upper().replace("U", "T")
k_mers_sequence = [
sequence[i : i + k_mers]
for i in range(len(sequence))
if len(sequence[i : i + k_mers]) == k_mers
]
return " ".join(k_mers_sequence)
def convert_sin_cos_to_angles(
self, output: np.ndarray, input_ids: Optional[np.ndarray] = None
):
"""
Convert the raw predictions of the RNA-TorsionBERT into angles.
It converts the cos and sinus into angles using:
alpha = arctan(sin(alpha)/cos(alpha))
:param output: Dictionary with the predictions of the RNA-TorsionBERT per angle
:param input_ids: the input_ids of the RNA-TorsionBERT. It allows to only select the of the sequence,
and not the special tokens.
:return: a np.ndarray with the angles for the sequence
"""
if input_ids is not None:
output[
(input_ids == 0)
| (input_ids == 2)
| (input_ids == 3)
| (input_ids == 4)
] = np.nan
pair_indexes, impair_indexes = np.arange(0, output.shape[-1], 2), np.arange(
1, output.shape[-1], 2
)
sin, cos = output[:, :, impair_indexes], output[:, :, pair_indexes]
tan = np.arctan2(sin, cos)
angles = np.degrees(tan)
return angles
def convert_logits_to_dict(self, output: np.ndarray, input_ids: np.ndarray) -> Dict:
"""
Convert the raw predictions into dictionary format.
It removes the special tokens and only keeps the predictions for the sequence.
:param output: predictions from the models in angles
:param input_ids: input ids from the tokenizer
:return: a dictionary with the predictions for each angle
"""
index_start, index_end = (
np.where(input_ids == 2)[0][0],
np.where(input_ids == 3)[0][0],
)
output_non_pad = output[index_start + 1 : index_end, :]
output_angles = {
angle: output_non_pad[:, angle_index]
for angle_index, angle in enumerate(BACKBONE)
}
out = pd.DataFrame(output_angles)
return out
if __name__ == "__main__":
sequence = "AGGGCUUUAGUCUUUGGAG"
rna_torsionbert_helper = RNATorsionBERTHelper()
output_angles = rna_torsionbert_helper.predict(sequence)
print(output_angles)
- Downloads last month
- 1,851
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API does not yet support model repos that contain custom code.
Model tree for sayby/rna_torsionBERT
Base model
zhihan1996/DNA_bert_3