metadata
library_name: stable-baselines3
tags:
- Pendulum-v1
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: '-272.21 +/- 159.73'
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: Pendulum-v1
type: Pendulum-v1
PPO Agent playing Pendulum-v1
This is a trained model of a PPO agent playing Pendulum-v1 using the stable-baselines3 library.
Usage (with Stable-baselines3)
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
# Create the environment
env_id = "Pendulum-v1"
env = make_vec_env(env_id, n_envs=1)
# Instantiate the agent
model = PPO(
"MlpPolicy",
env,
gamma=0.98,
use_sde=True,
sde_sample_freq=4,
learning_rate=1e-3,
verbose=1,
)
# Train the agent
model.learn(total_timesteps=int(1e5))