Qwen2-VL GGUF Models
Collection
LlamaEdge compatible quants for Qwen2-VL models.
•
3 items
•
Updated
•
1
LlamaEdge version: v0.16.0
Prompt template
Prompt type: qwen2-vision
Prompt string
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
<|vision_start|>{image_placeholder}<|vision_end|>{user_prompt}<|im_end|>
<|im_start|>assistant
Context size: 128000
Run as LlamaEdge service
wasmedge --dir .:. \
--nn-preload default:GGML:AUTO:Qwen2-VL-7B-Instruct-Q5_K_M.gguf \
llama-api-server.wasm \
--model-name Qwen2-VL-7B-Instruct \
--prompt-template qwen2-vision \
--llava-mmproj Qwen2-VL-7B-Instruct-vision-encoder.gguf \
--ctx-size 128000
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
Qwen2-VL-7B-Instruct-Q2_K.gguf | Q2_K | 2 | 3.02 GB | smallest, significant quality loss - not recommended for most purposes |
Qwen2-VL-7B-Instruct-Q3_K_L.gguf | Q3_K_L | 3 | 4.09 GB | small, substantial quality loss |
Qwen2-VL-7B-Instruct-Q3_K_M.gguf | Q3_K_M | 3 | 3.81 GB | very small, high quality loss |
Qwen2-VL-7B-Instruct-Q3_K_S.gguf | Q3_K_S | 3 | 3.49 GB | very small, high quality loss |
Qwen2-VL-7B-Instruct-Q4_0.gguf | Q4_0 | 4 | 4.43 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Qwen2-VL-7B-Instruct-Q4_K_M.gguf | Q4_K_M | 4 | 4.68 GB | medium, balanced quality - recommended |
Qwen2-VL-7B-Instruct-Q4_K_S.gguf | Q4_K_S | 4 | 4.46 GB | small, greater quality loss |
Qwen2-VL-7B-Instruct-Q5_0.gguf | Q5_0 | 5 | 5.32 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Qwen2-VL-7B-Instruct-Q5_K_M.gguf | Q5_K_M | 5 | 5.44 GB | large, very low quality loss - recommended |
Qwen2-VL-7B-Instruct-Q5_K_S.gguf | Q5_K_S | 5 | 5.32 GB | large, low quality loss - recommended |
Qwen2-VL-7B-Instruct-Q6_K.gguf | Q6_K | 6 | 6.25 GB | very large, extremely low quality loss |
Qwen2-VL-7B-Instruct-Q8_0.gguf | Q8_0 | 8 | 8.21 GB | very large, extremely low quality loss - not recommended |
Qwen2-VL-7B-Instruct-f16.gguf | f16 | 16 | 15.2 GB | |
Qwen2-VL-7B-Instruct-vision-encoder.gguf | f16 | 16 | 2.70 GB |
Quantized with llama.cpp b4329