sejalv's picture
sejalv/Fine_Tuned_LP_TROCR
63d5f1f verified
metadata
base_model: microsoft/trocr-small-printed
tags:
  - generated_from_trainer
model-index:
  - name: seq2seq_model_printed
    results: []

seq2seq_model_printed

This model is a fine-tuned version of microsoft/trocr-small-printed on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5578
  • Cer: 0.2138

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 35
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer
4.6751 1.0 244 3.5585 1.0652
3.3624 2.0 488 2.7206 0.7373
2.9125 3.0 732 1.9523 0.5418
2.5734 4.0 976 2.0470 0.7149
2.4143 5.0 1220 1.4577 0.3585
2.2459 6.0 1464 1.5741 0.4501
2.1514 7.0 1708 1.2625 0.3218
2.0268 8.0 1952 1.4816 0.3625
1.9513 9.0 2196 1.6085 0.3259
1.7768 10.0 2440 1.4458 0.4033
1.7156 11.0 2684 1.4845 0.3055
1.5976 12.0 2928 1.6491 0.3503
1.4664 13.0 3172 1.3220 0.3381
1.3276 14.0 3416 1.4486 0.3503
1.2354 15.0 3660 1.6394 0.3177
1.1072 16.0 3904 1.5189 0.3035
0.9209 17.0 4148 1.3820 0.2485
0.7356 18.0 4392 1.4799 0.2607
0.6336 19.0 4636 1.5075 0.2220
0.5035 20.0 4880 1.5413 0.2179
0.406 21.0 5124 1.5602 0.2464
0.3294 22.0 5368 1.4495 0.2159
0.2515 23.0 5612 1.5809 0.2240
0.2207 24.0 5856 1.5188 0.2281
0.1689 25.0 6100 1.5153 0.2118
0.1426 26.0 6344 1.5616 0.2118
0.1142 27.0 6588 1.7044 0.2179
0.0785 28.0 6832 1.6267 0.2281
0.0751 29.0 7076 1.6769 0.2159
0.0507 30.0 7320 1.7316 0.2342
0.0388 31.0 7564 1.5750 0.2220
0.0264 32.0 7808 1.7028 0.2159
0.021 33.0 8052 1.6861 0.2322
0.0195 34.0 8296 1.7154 0.2077
0.0167 35.0 8540 1.5578 0.2138

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.1.0a0+b5021ba
  • Datasets 2.20.0
  • Tokenizers 0.19.1