segformer-b1-finetuned-cityscapes-1024-1024-straighter-only

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0331
  • Mean Iou: 0.9378
  • Mean Accuracy: 0.9644
  • Overall Accuracy: 0.9883
  • Accuracy Default: 1e-06
  • Accuracy Pipe: 0.9182
  • Accuracy Floor: 0.9790
  • Accuracy Background: 0.9961
  • Iou Default: 1e-06
  • Iou Pipe: 0.8600
  • Iou Floor: 0.9637
  • Iou Background: 0.9896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Default Accuracy Pipe Accuracy Floor Accuracy Background Iou Default Iou Pipe Iou Floor Iou Background
0.5349 1.0 36 0.1593 0.8143 0.8613 0.9661 1e-06 0.6324 0.9614 0.9903 1e-06 0.5490 0.9277 0.9660
0.1472 2.0 72 0.0977 0.8792 0.9255 0.9782 1e-06 0.8153 0.9690 0.9922 1e-06 0.7119 0.9456 0.9800
0.0902 3.0 108 0.0708 0.9014 0.9285 0.9820 1e-06 0.8194 0.9690 0.9972 1e-06 0.7669 0.9558 0.9815
0.0662 4.0 144 0.0586 0.9146 0.9552 0.9842 1e-06 0.9036 0.9666 0.9954 1e-06 0.8015 0.9567 0.9856
0.0543 5.0 180 0.0490 0.9225 0.9514 0.9856 1e-06 0.8844 0.9734 0.9964 1e-06 0.8208 0.9606 0.9860
0.0486 6.0 216 0.0445 0.9252 0.9640 0.9862 1e-06 0.9244 0.9729 0.9947 1e-06 0.8265 0.9616 0.9875
0.042 7.0 252 0.0414 0.9279 0.9658 0.9867 1e-06 0.9315 0.9699 0.9959 1e-06 0.8332 0.9626 0.9880
0.0389 8.0 288 0.0381 0.9322 0.9695 0.9874 1e-06 0.9413 0.9716 0.9956 1e-06 0.8448 0.9632 0.9888
0.0359 9.0 324 0.0386 0.9319 0.9629 0.9871 1e-06 0.9215 0.9702 0.9970 1e-06 0.8451 0.9630 0.9877
0.034 10.0 360 0.0374 0.9313 0.9632 0.9873 1e-06 0.9202 0.9730 0.9965 1e-06 0.8422 0.9634 0.9883
0.0322 11.0 396 0.0383 0.9300 0.9570 0.9871 1e-06 0.8993 0.9746 0.9971 1e-06 0.8379 0.9642 0.9878
0.0306 12.0 432 0.0353 0.9340 0.9678 0.9876 1e-06 0.9358 0.9710 0.9965 1e-06 0.8494 0.9637 0.9888
0.0292 13.0 468 0.0337 0.9355 0.9734 0.9881 1e-06 0.9527 0.9719 0.9957 1e-06 0.8529 0.9637 0.9898
0.0286 14.0 504 0.0334 0.9355 0.9686 0.9881 1e-06 0.9352 0.9745 0.9960 1e-06 0.8530 0.9641 0.9895
0.0271 15.0 540 0.0325 0.9389 0.9682 0.9885 1e-06 0.9325 0.9758 0.9964 1e-06 0.8624 0.9648 0.9897
0.0266 16.0 576 0.0327 0.9373 0.9696 0.9883 1e-06 0.9378 0.9748 0.9961 1e-06 0.8576 0.9646 0.9897
0.0257 17.0 612 0.0350 0.9330 0.9673 0.9877 1e-06 0.9302 0.9766 0.9952 1e-06 0.8463 0.9636 0.9892
0.0246 18.0 648 0.0333 0.9354 0.9665 0.9881 1e-06 0.9269 0.9764 0.9961 1e-06 0.8522 0.9644 0.9896
0.0242 19.0 684 0.0326 0.9378 0.9681 0.9884 1e-06 0.9311 0.9772 0.9959 1e-06 0.8588 0.9648 0.9896
0.0231 20.0 720 0.0339 0.9366 0.9665 0.9883 1e-06 0.9256 0.9781 0.9958 1e-06 0.8557 0.9646 0.9896
0.0236 21.0 756 0.0333 0.9365 0.9702 0.9883 1e-06 0.9375 0.9779 0.9951 1e-06 0.8552 0.9644 0.9900
0.0227 22.0 792 0.0327 0.9375 0.9690 0.9885 1e-06 0.9339 0.9773 0.9958 1e-06 0.8577 0.9649 0.9900
0.0226 23.0 828 0.0331 0.9378 0.9644 0.9883 1e-06 0.9182 0.9790 0.9961 1e-06 0.8600 0.9637 0.9896

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.0.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for selvaa/segformer-b1-finetuned-cityscapes-1024-1024-straighter-only

Finetuned
(8)
this model