pipeline_tag: sentence-similarity | |
tags: | |
- sentence-transformers | |
- feature-extraction | |
- sentence-similarity | |
# {MODEL_NAME} | |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a None dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
<!--- Describe your model here --> | |
## Usage (Sentence-Transformers) | |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
``` | |
pip install -U sentence-transformers | |
``` | |
Then you can use the model like this: | |
```python | |
from sentence_transformers import SentenceTransformer | |
sentences = ["This is an example sentence", "Each sentence is converted"] | |
model = SentenceTransformer('{MODEL_NAME}') | |
embeddings = model.encode(sentences) | |
print(embeddings) | |
``` | |
## Evaluation Results | |
<!--- Describe how your model was evaluated --> | |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) | |
## Full Model Architecture | |
``` | |
SentenceTransformer( | |
(0): CLIPModel() | |
) | |
``` | |
## Citing & Authors | |
<!--- Describe where people can find more information --> |