SentenceTransformer based on intfloat/multilingual-e5-large
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/e5-large-neg-v0-bs40-lr1e-6-1000")
# Run inference
sentences = [
'아야미 ?카가 홍대 스테이라운지에서 개최하는 것은?',
'▲ 사진= BJ 야하군 제공 일본 유명 AV배우 아야미 ?카(あやみ旬果)가 한국 팬들을 만난다. 아야미 ?카는 오는 7일 오후 홍대 스테이라운지에서 팬미팅을 개최한다. 야마미 ?카는 독보적인 이미지로 일본 뿐만 아니라 한국에서도 많은 팬을 가지고 있다. 이날 팬미팅에는 근황토크 및 게임, 포토타임, 사인회, 선물 증정 시간 등이 예정돼 있어 팬들의 기대감을 고조시켰다. 한편 아야미 ?카의 팬미팅은 19세 이상의 성인을 대상으로 진행되며, 온라인을 통해 티켓을 구매할 수 있다.',
'일본 첫 단독공연을 앞둔 힙합그룹 MIB(엠아비)가 일본에서 뜨거운 인기를 실감하고 있다. 공연을 하루 앞둔 지난23일, MIB는 일본 도쿄 시부야에 있는 대형레코드 체인점 \'타워레코드\'에서 \'악수회\'를 성황리에 개최했다. \'악수회\' 수시간 전부터 MIB를 보기 위해 300여명의 팬들이 플래카드를 들고 타워레코드로 모여 현지관 계자를 놀라게 했다. 이에 앞서 MIB는 케이팝 전문방송인 \'K-POP LOVERS\'에 출연해 일본 진출 및 첫 단독 공연을 앞둔 소감을 전한 것은 물론, 강남의 칼럼에 소개된 에피소드에 대해 이야기하고 팬들의 궁금증을 풀어주는 시간도 가졌다. 정글엔터테인먼트 관계자는 "K-힙합을 MIB를 통해 일본 음악시장에 전파 할 수 있는 좋은 기회가 될 것이라고 생각한다"며 "향후 타워레코드 외에도 일본 메이저음반 기획사, 음반사와 접촉해 다양한 프로모션을 진행할 것"이라고 말했다. 현지 연예 관계자는 "MIB 멤버 강남이 재일교포라는 점이 현지 팬들에게 큰 관심을 불러일으키고 있는 것 같다. 특히 강남은 타워레코드 온라인 사이트에 격주 목요일마다 칼럼을 연재하고 있는데 이 또한 큰 인기를 모으고 있다"며 MIB의 일본 내 성공 가능성을 예측했다. 한편, MIB는 오늘(24일) 오후 3시 30분부터 하라주쿠에 위치한 아스트로홀에서 일본의 주요 음반 관계자들이 참석한 가운데 총2회에 걸쳐 일본 첫 단독 공연 \'We are M.I.B\'를 개최한다.& lt;연예부>',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 5e-06num_train_epochs
: 1warmup_steps
: 100bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 100log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0001 | 1 | 1.9307 |
0.0003 | 2 | 1.9013 |
0.0004 | 3 | 1.9678 |
0.0005 | 4 | 1.912 |
0.0007 | 5 | 1.9856 |
0.0008 | 6 | 1.9017 |
0.0009 | 7 | 1.8966 |
0.0011 | 8 | 1.9761 |
0.0012 | 9 | 1.9268 |
0.0013 | 10 | 1.9604 |
0.0015 | 11 | 1.8515 |
0.0016 | 12 | 1.9247 |
0.0017 | 13 | 1.9196 |
0.0019 | 14 | 1.9611 |
0.0020 | 15 | 1.9202 |
0.0021 | 16 | 2.0048 |
0.0023 | 17 | 1.8684 |
0.0024 | 18 | 1.9605 |
0.0025 | 19 | 1.9693 |
0.0027 | 20 | 1.9385 |
0.0028 | 21 | 1.9736 |
0.0029 | 22 | 1.8907 |
0.0030 | 23 | 1.9025 |
0.0032 | 24 | 1.9233 |
0.0033 | 25 | 1.9427 |
0.0034 | 26 | 1.8181 |
0.0036 | 27 | 1.9536 |
0.0037 | 28 | 1.9766 |
0.0038 | 29 | 1.8892 |
0.0040 | 30 | 1.9381 |
0.0041 | 31 | 1.9046 |
0.0042 | 32 | 1.9097 |
0.0044 | 33 | 1.8813 |
0.0045 | 34 | 1.9537 |
0.0046 | 35 | 1.8715 |
0.0048 | 36 | 1.9787 |
0.0049 | 37 | 1.8877 |
0.0050 | 38 | 1.8891 |
0.0052 | 39 | 1.9122 |
0.0053 | 40 | 1.8853 |
0.0054 | 41 | 1.9297 |
0.0056 | 42 | 1.8776 |
0.0057 | 43 | 1.887 |
0.0058 | 44 | 1.9018 |
0.0060 | 45 | 1.8387 |
0.0061 | 46 | 1.8525 |
0.0062 | 47 | 1.919 |
0.0064 | 48 | 1.9223 |
0.0065 | 49 | 1.7887 |
0.0066 | 50 | 1.8343 |
0.0068 | 51 | 1.8631 |
0.0069 | 52 | 1.8391 |
0.0070 | 53 | 1.7403 |
0.0072 | 54 | 1.8625 |
0.0073 | 55 | 1.8766 |
0.0074 | 56 | 1.755 |
0.0076 | 57 | 1.8058 |
0.0077 | 58 | 1.7889 |
0.0078 | 59 | 1.8359 |
0.0080 | 60 | 1.8129 |
0.0081 | 61 | 1.8005 |
0.0082 | 62 | 1.7291 |
0.0084 | 63 | 1.7851 |
0.0085 | 64 | 1.8281 |
0.0086 | 65 | 1.7887 |
0.0088 | 66 | 1.743 |
0.0089 | 67 | 1.7501 |
0.0090 | 68 | 1.7622 |
0.0091 | 69 | 1.8374 |
0.0093 | 70 | 1.7625 |
0.0094 | 71 | 1.6925 |
0.0095 | 72 | 1.8021 |
0.0097 | 73 | 1.7379 |
0.0098 | 74 | 1.652 |
0.0099 | 75 | 1.6583 |
0.0101 | 76 | 1.6557 |
0.0102 | 77 | 1.652 |
0.0103 | 78 | 1.6297 |
0.0105 | 79 | 1.668 |
0.0106 | 80 | 1.7019 |
0.0107 | 81 | 1.6268 |
0.0109 | 82 | 1.5703 |
0.0110 | 83 | 1.6884 |
0.0111 | 84 | 1.7507 |
0.0113 | 85 | 1.5727 |
0.0114 | 86 | 1.6969 |
0.0115 | 87 | 1.6063 |
0.0117 | 88 | 1.5675 |
0.0118 | 89 | 1.5301 |
0.0119 | 90 | 1.5201 |
0.0121 | 91 | 1.5569 |
0.0122 | 92 | 1.5325 |
0.0123 | 93 | 1.5406 |
0.0125 | 94 | 1.4992 |
0.0126 | 95 | 1.4889 |
0.0127 | 96 | 1.4308 |
0.0129 | 97 | 1.3782 |
0.0130 | 98 | 1.4542 |
0.0131 | 99 | 1.4327 |
0.0133 | 100 | 1.4437 |
0.0134 | 101 | 1.3352 |
0.0135 | 102 | 1.3605 |
0.0137 | 103 | 1.3732 |
0.0138 | 104 | 1.3752 |
0.0139 | 105 | 1.324 |
0.0141 | 106 | 1.3317 |
0.0142 | 107 | 1.2643 |
0.0143 | 108 | 1.2754 |
0.0145 | 109 | 1.2622 |
0.0146 | 110 | 1.1565 |
0.0147 | 111 | 1.2645 |
0.0149 | 112 | 1.1257 |
0.0150 | 113 | 1.1826 |
0.0151 | 114 | 1.2016 |
0.0152 | 115 | 1.2099 |
0.0154 | 116 | 1.17 |
0.0155 | 117 | 1.2047 |
0.0156 | 118 | 1.1152 |
0.0158 | 119 | 1.1606 |
0.0159 | 120 | 1.1492 |
0.0160 | 121 | 1.1575 |
0.0162 | 122 | 1.1599 |
0.0163 | 123 | 1.1498 |
0.0164 | 124 | 1.0323 |
0.0166 | 125 | 1.1129 |
0.0167 | 126 | 1.0861 |
0.0168 | 127 | 1.0424 |
0.0170 | 128 | 0.9815 |
0.0171 | 129 | 1.0264 |
0.0172 | 130 | 1.0357 |
0.0174 | 131 | 0.9753 |
0.0175 | 132 | 0.9904 |
0.0176 | 133 | 0.9881 |
0.0178 | 134 | 1.0703 |
0.0179 | 135 | 0.9154 |
0.0180 | 136 | 0.8621 |
0.0182 | 137 | 0.9127 |
0.0183 | 138 | 0.9136 |
0.0184 | 139 | 0.9438 |
0.0186 | 140 | 0.9462 |
0.0187 | 141 | 0.8737 |
0.0188 | 142 | 0.9194 |
0.0190 | 143 | 0.8149 |
0.0191 | 144 | 0.9356 |
0.0192 | 145 | 0.8444 |
0.0194 | 146 | 0.7857 |
0.0195 | 147 | 0.8543 |
0.0196 | 148 | 0.7438 |
0.0198 | 149 | 0.6994 |
0.0199 | 150 | 0.8255 |
0.0200 | 151 | 0.7701 |
0.0202 | 152 | 0.7877 |
0.0203 | 153 | 0.7478 |
0.0204 | 154 | 0.8188 |
0.0206 | 155 | 0.7664 |
0.0207 | 156 | 0.6715 |
0.0208 | 157 | 0.7164 |
0.0210 | 158 | 0.7475 |
0.0211 | 159 | 0.701 |
0.0212 | 160 | 0.6741 |
0.0213 | 161 | 0.7849 |
0.0215 | 162 | 0.6964 |
0.0216 | 163 | 0.6787 |
0.0217 | 164 | 0.6701 |
0.0219 | 165 | 0.6845 |
0.0220 | 166 | 0.7393 |
0.0221 | 167 | 0.6533 |
0.0223 | 168 | 0.7024 |
0.0224 | 169 | 0.6524 |
0.0225 | 170 | 0.6748 |
0.0227 | 171 | 0.6508 |
0.0228 | 172 | 0.5762 |
0.0229 | 173 | 0.6419 |
0.0231 | 174 | 0.5881 |
0.0232 | 175 | 0.612 |
0.0233 | 176 | 0.6294 |
0.0235 | 177 | 0.5756 |
0.0236 | 178 | 0.705 |
0.0237 | 179 | 0.6179 |
0.0239 | 180 | 0.6334 |
0.0240 | 181 | 0.6372 |
0.0241 | 182 | 0.7345 |
0.0243 | 183 | 0.6357 |
0.0244 | 184 | 0.5883 |
0.0245 | 185 | 0.5528 |
0.0247 | 186 | 0.5066 |
0.0248 | 187 | 0.5439 |
0.0249 | 188 | 0.5398 |
0.0251 | 189 | 0.5591 |
0.0252 | 190 | 0.5669 |
0.0253 | 191 | 0.5396 |
0.0255 | 192 | 0.5971 |
0.0256 | 193 | 0.5329 |
0.0257 | 194 | 0.5109 |
0.0259 | 195 | 0.4847 |
0.0260 | 196 | 0.6001 |
0.0261 | 197 | 0.4728 |
0.0263 | 198 | 0.4704 |
0.0264 | 199 | 0.4413 |
0.0265 | 200 | 0.4605 |
0.0267 | 201 | 0.488 |
0.0268 | 202 | 0.5198 |
0.0269 | 203 | 0.5348 |
0.0271 | 204 | 0.5426 |
0.0272 | 205 | 0.4714 |
0.0273 | 206 | 0.524 |
0.0274 | 207 | 0.5083 |
0.0276 | 208 | 0.4022 |
0.0277 | 209 | 0.4506 |
0.0278 | 210 | 0.4665 |
0.0280 | 211 | 0.4332 |
0.0281 | 212 | 0.3997 |
0.0282 | 213 | 0.4713 |
0.0284 | 214 | 0.3748 |
0.0285 | 215 | 0.462 |
0.0286 | 216 | 0.4173 |
0.0288 | 217 | 0.5133 |
0.0289 | 218 | 0.468 |
0.0290 | 219 | 0.4126 |
0.0292 | 220 | 0.3928 |
0.0293 | 221 | 0.4335 |
0.0294 | 222 | 0.4527 |
0.0296 | 223 | 0.4301 |
0.0297 | 224 | 0.4705 |
0.0298 | 225 | 0.415 |
0.0300 | 226 | 0.3935 |
0.0301 | 227 | 0.366 |
0.0302 | 228 | 0.4617 |
0.0304 | 229 | 0.4185 |
0.0305 | 230 | 0.3836 |
0.0306 | 231 | 0.3915 |
0.0308 | 232 | 0.3345 |
0.0309 | 233 | 0.4118 |
0.0310 | 234 | 0.4165 |
0.0312 | 235 | 0.3431 |
0.0313 | 236 | 0.3799 |
0.0314 | 237 | 0.3735 |
0.0316 | 238 | 0.4321 |
0.0317 | 239 | 0.4097 |
0.0318 | 240 | 0.4396 |
0.0320 | 241 | 0.3443 |
0.0321 | 242 | 0.4912 |
0.0322 | 243 | 0.4022 |
0.0324 | 244 | 0.3461 |
0.0325 | 245 | 0.444 |
0.0326 | 246 | 0.4546 |
0.0328 | 247 | 0.4318 |
0.0329 | 248 | 0.3992 |
0.0330 | 249 | 0.3472 |
0.0332 | 250 | 0.396 |
0.0333 | 251 | 0.3796 |
0.0334 | 252 | 0.3963 |
0.0335 | 253 | 0.423 |
0.0337 | 254 | 0.3953 |
0.0338 | 255 | 0.3504 |
0.0339 | 256 | 0.3481 |
0.0341 | 257 | 0.3675 |
0.0342 | 258 | 0.4163 |
0.0343 | 259 | 0.352 |
0.0345 | 260 | 0.401 |
0.0346 | 261 | 0.4511 |
0.0347 | 262 | 0.3748 |
0.0349 | 263 | 0.3149 |
0.0350 | 264 | 0.2681 |
0.0351 | 265 | 0.4258 |
0.0353 | 266 | 0.3183 |
0.0354 | 267 | 0.3674 |
0.0355 | 268 | 0.3169 |
0.0357 | 269 | 0.3665 |
0.0358 | 270 | 0.3627 |
0.0359 | 271 | 0.3394 |
0.0361 | 272 | 0.3814 |
0.0362 | 273 | 0.4377 |
0.0363 | 274 | 0.3149 |
0.0365 | 275 | 0.3458 |
0.0366 | 276 | 0.3835 |
0.0367 | 277 | 0.3858 |
0.0369 | 278 | 0.3735 |
0.0370 | 279 | 0.2908 |
0.0371 | 280 | 0.3302 |
0.0373 | 281 | 0.2657 |
0.0374 | 282 | 0.3283 |
0.0375 | 283 | 0.3472 |
0.0377 | 284 | 0.3701 |
0.0378 | 285 | 0.3984 |
0.0379 | 286 | 0.344 |
0.0381 | 287 | 0.3096 |
0.0382 | 288 | 0.382 |
0.0383 | 289 | 0.2969 |
0.0385 | 290 | 0.3521 |
0.0386 | 291 | 0.3656 |
0.0387 | 292 | 0.2156 |
0.0389 | 293 | 0.2769 |
0.0390 | 294 | 0.348 |
0.0391 | 295 | 0.2789 |
0.0393 | 296 | 0.3394 |
0.0394 | 297 | 0.2985 |
0.0395 | 298 | 0.2845 |
0.0396 | 299 | 0.2794 |
0.0398 | 300 | 0.3404 |
0.0399 | 301 | 0.272 |
0.0400 | 302 | 0.2806 |
0.0402 | 303 | 0.359 |
0.0403 | 304 | 0.2621 |
0.0404 | 305 | 0.2795 |
0.0406 | 306 | 0.2954 |
0.0407 | 307 | 0.3162 |
0.0408 | 308 | 0.401 |
0.0410 | 309 | 0.3367 |
0.0411 | 310 | 0.3762 |
0.0412 | 311 | 0.3056 |
0.0414 | 312 | 0.3379 |
0.0415 | 313 | 0.3156 |
0.0416 | 314 | 0.3274 |
0.0418 | 315 | 0.3386 |
0.0419 | 316 | 0.3434 |
0.0420 | 317 | 0.2867 |
0.0422 | 318 | 0.2996 |
0.0423 | 319 | 0.3022 |
0.0424 | 320 | 0.3414 |
0.0426 | 321 | 0.2923 |
0.0427 | 322 | 0.3175 |
0.0428 | 323 | 0.3304 |
0.0430 | 324 | 0.2774 |
0.0431 | 325 | 0.2385 |
0.0432 | 326 | 0.362 |
0.0434 | 327 | 0.3068 |
0.0435 | 328 | 0.2775 |
0.0436 | 329 | 0.3612 |
0.0438 | 330 | 0.3716 |
0.0439 | 331 | 0.3137 |
0.0440 | 332 | 0.2856 |
0.0442 | 333 | 0.3177 |
0.0443 | 334 | 0.2966 |
0.0444 | 335 | 0.351 |
0.0446 | 336 | 0.2747 |
0.0447 | 337 | 0.334 |
0.0448 | 338 | 0.2556 |
0.0450 | 339 | 0.2811 |
0.0451 | 340 | 0.293 |
0.0452 | 341 | 0.2998 |
0.0454 | 342 | 0.2859 |
0.0455 | 343 | 0.2737 |
0.0456 | 344 | 0.2677 |
0.0457 | 345 | 0.2629 |
0.0459 | 346 | 0.3393 |
0.0460 | 347 | 0.2077 |
0.0461 | 348 | 0.2861 |
0.0463 | 349 | 0.297 |
0.0464 | 350 | 0.2625 |
0.0465 | 351 | 0.2875 |
0.0467 | 352 | 0.3205 |
0.0468 | 353 | 0.2951 |
0.0469 | 354 | 0.3056 |
0.0471 | 355 | 0.3167 |
0.0472 | 356 | 0.3063 |
0.0473 | 357 | 0.2618 |
0.0475 | 358 | 0.2525 |
0.0476 | 359 | 0.2869 |
0.0477 | 360 | 0.268 |
0.0479 | 361 | 0.329 |
0.0480 | 362 | 0.2428 |
0.0481 | 363 | 0.4065 |
0.0483 | 364 | 0.36 |
0.0484 | 365 | 0.3337 |
0.0485 | 366 | 0.2657 |
0.0487 | 367 | 0.3232 |
0.0488 | 368 | 0.2078 |
0.0489 | 369 | 0.3193 |
0.0491 | 370 | 0.3445 |
0.0492 | 371 | 0.3573 |
0.0493 | 372 | 0.2867 |
0.0495 | 373 | 0.2931 |
0.0496 | 374 | 0.2472 |
0.0497 | 375 | 0.3192 |
0.0499 | 376 | 0.3306 |
0.0500 | 377 | 0.2881 |
0.0501 | 378 | 0.2421 |
0.0503 | 379 | 0.2565 |
0.0504 | 380 | 0.2229 |
0.0505 | 381 | 0.2859 |
0.0507 | 382 | 0.259 |
0.0508 | 383 | 0.2778 |
0.0509 | 384 | 0.2952 |
0.0511 | 385 | 0.2943 |
0.0512 | 386 | 0.2375 |
0.0513 | 387 | 0.2742 |
0.0515 | 388 | 0.3092 |
0.0516 | 389 | 0.2887 |
0.0517 | 390 | 0.2456 |
0.0518 | 391 | 0.2789 |
0.0520 | 392 | 0.2996 |
0.0521 | 393 | 0.2245 |
0.0522 | 394 | 0.2964 |
0.0524 | 395 | 0.2965 |
0.0525 | 396 | 0.2602 |
0.0526 | 397 | 0.3065 |
0.0528 | 398 | 0.2225 |
0.0529 | 399 | 0.2502 |
0.0530 | 400 | 0.2535 |
0.0532 | 401 | 0.3445 |
0.0533 | 402 | 0.3139 |
0.0534 | 403 | 0.232 |
0.0536 | 404 | 0.2447 |
0.0537 | 405 | 0.3257 |
0.0538 | 406 | 0.2641 |
0.0540 | 407 | 0.2454 |
0.0541 | 408 | 0.2973 |
0.0542 | 409 | 0.2934 |
0.0544 | 410 | 0.3454 |
0.0545 | 411 | 0.3162 |
0.0546 | 412 | 0.2517 |
0.0548 | 413 | 0.2399 |
0.0549 | 414 | 0.3433 |
0.0550 | 415 | 0.2313 |
0.0552 | 416 | 0.2285 |
0.0553 | 417 | 0.2798 |
0.0554 | 418 | 0.3407 |
0.0556 | 419 | 0.2674 |
0.0557 | 420 | 0.2969 |
0.0558 | 421 | 0.3665 |
0.0560 | 422 | 0.2255 |
0.0561 | 423 | 0.2393 |
0.0562 | 424 | 0.3153 |
0.0564 | 425 | 0.2871 |
0.0565 | 426 | 0.2331 |
0.0566 | 427 | 0.2986 |
0.0568 | 428 | 0.2717 |
0.0569 | 429 | 0.2719 |
0.0570 | 430 | 0.2401 |
0.0572 | 431 | 0.3039 |
0.0573 | 432 | 0.2839 |
0.0574 | 433 | 0.2681 |
0.0576 | 434 | 0.2383 |
0.0577 | 435 | 0.248 |
0.0578 | 436 | 0.2649 |
0.0579 | 437 | 0.2803 |
0.0581 | 438 | 0.2594 |
0.0582 | 439 | 0.2581 |
0.0583 | 440 | 0.1916 |
0.0585 | 441 | 0.2726 |
0.0586 | 442 | 0.3164 |
0.0587 | 443 | 0.2197 |
0.0589 | 444 | 0.2992 |
0.0590 | 445 | 0.2456 |
0.0591 | 446 | 0.2471 |
0.0593 | 447 | 0.2251 |
0.0594 | 448 | 0.2601 |
0.0595 | 449 | 0.2776 |
0.0597 | 450 | 0.2862 |
0.0598 | 451 | 0.2087 |
0.0599 | 452 | 0.2595 |
0.0601 | 453 | 0.2999 |
0.0602 | 454 | 0.2091 |
0.0603 | 455 | 0.2563 |
0.0605 | 456 | 0.2277 |
0.0606 | 457 | 0.2301 |
0.0607 | 458 | 0.2402 |
0.0609 | 459 | 0.2494 |
0.0610 | 460 | 0.2709 |
0.0611 | 461 | 0.286 |
0.0613 | 462 | 0.265 |
0.0614 | 463 | 0.2205 |
0.0615 | 464 | 0.3257 |
0.0617 | 465 | 0.2403 |
0.0618 | 466 | 0.2221 |
0.0619 | 467 | 0.2415 |
0.0621 | 468 | 0.2372 |
0.0622 | 469 | 0.2816 |
0.0623 | 470 | 0.2298 |
0.0625 | 471 | 0.3038 |
0.0626 | 472 | 0.2694 |
0.0627 | 473 | 0.238 |
0.0629 | 474 | 0.2296 |
0.0630 | 475 | 0.2784 |
0.0631 | 476 | 0.2422 |
0.0633 | 477 | 0.2675 |
0.0634 | 478 | 0.2939 |
0.0635 | 479 | 0.2393 |
0.0637 | 480 | 0.2433 |
0.0638 | 481 | 0.268 |
0.0639 | 482 | 0.2381 |
0.0640 | 483 | 0.3069 |
0.0642 | 484 | 0.2794 |
0.0643 | 485 | 0.2628 |
0.0644 | 486 | 0.2404 |
0.0646 | 487 | 0.2309 |
0.0647 | 488 | 0.282 |
0.0648 | 489 | 0.312 |
0.0650 | 490 | 0.1765 |
0.0651 | 491 | 0.2379 |
0.0652 | 492 | 0.2543 |
0.0654 | 493 | 0.2469 |
0.0655 | 494 | 0.2743 |
0.0656 | 495 | 0.2989 |
0.0658 | 496 | 0.2591 |
0.0659 | 497 | 0.2603 |
0.0660 | 498 | 0.2469 |
0.0662 | 499 | 0.2843 |
0.0663 | 500 | 0.3094 |
0.0664 | 501 | 0.308 |
0.0666 | 502 | 0.2748 |
0.0667 | 503 | 0.2872 |
0.0668 | 504 | 0.2911 |
0.0670 | 505 | 0.2638 |
0.0671 | 506 | 0.2492 |
0.0672 | 507 | 0.2105 |
0.0674 | 508 | 0.2691 |
0.0675 | 509 | 0.323 |
0.0676 | 510 | 0.2523 |
0.0678 | 511 | 0.24 |
0.0679 | 512 | 0.23 |
0.0680 | 513 | 0.2539 |
0.0682 | 514 | 0.1826 |
0.0683 | 515 | 0.2862 |
0.0684 | 516 | 0.2399 |
0.0686 | 517 | 0.3351 |
0.0687 | 518 | 0.2342 |
0.0688 | 519 | 0.3024 |
0.0690 | 520 | 0.2693 |
0.0691 | 521 | 0.2057 |
0.0692 | 522 | 0.2194 |
0.0694 | 523 | 0.155 |
0.0695 | 524 | 0.2445 |
0.0696 | 525 | 0.2262 |
0.0698 | 526 | 0.235 |
0.0699 | 527 | 0.2306 |
0.0700 | 528 | 0.2437 |
0.0701 | 529 | 0.2656 |
0.0703 | 530 | 0.2731 |
0.0704 | 531 | 0.281 |
0.0705 | 532 | 0.2421 |
0.0707 | 533 | 0.2406 |
0.0708 | 534 | 0.3476 |
0.0709 | 535 | 0.3076 |
0.0711 | 536 | 0.2794 |
0.0712 | 537 | 0.2168 |
0.0713 | 538 | 0.2138 |
0.0715 | 539 | 0.2067 |
0.0716 | 540 | 0.335 |
0.0717 | 541 | 0.2257 |
0.0719 | 542 | 0.2593 |
0.0720 | 543 | 0.2709 |
0.0721 | 544 | 0.2433 |
0.0723 | 545 | 0.2653 |
0.0724 | 546 | 0.2434 |
0.0725 | 547 | 0.2253 |
0.0727 | 548 | 0.2034 |
0.0728 | 549 | 0.2703 |
0.0729 | 550 | 0.3162 |
0.0731 | 551 | 0.2171 |
0.0732 | 552 | 0.2334 |
0.0733 | 553 | 0.2613 |
0.0735 | 554 | 0.2287 |
0.0736 | 555 | 0.2343 |
0.0737 | 556 | 0.2008 |
0.0739 | 557 | 0.2462 |
0.0740 | 558 | 0.2756 |
0.0741 | 559 | 0.2186 |
0.0743 | 560 | 0.2357 |
0.0744 | 561 | 0.1811 |
0.0745 | 562 | 0.2386 |
0.0747 | 563 | 0.2244 |
0.0748 | 564 | 0.3145 |
0.0749 | 565 | 0.2261 |
0.0751 | 566 | 0.2449 |
0.0752 | 567 | 0.2855 |
0.0753 | 568 | 0.235 |
0.0755 | 569 | 0.2283 |
0.0756 | 570 | 0.2084 |
0.0757 | 571 | 0.2431 |
0.0759 | 572 | 0.2362 |
0.0760 | 573 | 0.2498 |
0.0761 | 574 | 0.2542 |
0.0762 | 575 | 0.2262 |
0.0764 | 576 | 0.2368 |
0.0765 | 577 | 0.2673 |
0.0766 | 578 | 0.2123 |
0.0768 | 579 | 0.2354 |
0.0769 | 580 | 0.2616 |
0.0770 | 581 | 0.2296 |
0.0772 | 582 | 0.2837 |
0.0773 | 583 | 0.256 |
0.0774 | 584 | 0.1973 |
0.0776 | 585 | 0.2311 |
0.0777 | 586 | 0.2219 |
0.0778 | 587 | 0.2318 |
0.0780 | 588 | 0.2215 |
0.0781 | 589 | 0.2474 |
0.0782 | 590 | 0.1652 |
0.0784 | 591 | 0.2297 |
0.0785 | 592 | 0.2132 |
0.0786 | 593 | 0.2405 |
0.0788 | 594 | 0.2012 |
0.0789 | 595 | 0.2628 |
0.0790 | 596 | 0.2305 |
0.0792 | 597 | 0.1794 |
0.0793 | 598 | 0.226 |
0.0794 | 599 | 0.2852 |
0.0796 | 600 | 0.2026 |
0.0797 | 601 | 0.2286 |
0.0798 | 602 | 0.2489 |
0.0800 | 603 | 0.244 |
0.0801 | 604 | 0.1933 |
0.0802 | 605 | 0.2627 |
0.0804 | 606 | 0.2742 |
0.0805 | 607 | 0.2534 |
0.0806 | 608 | 0.2006 |
0.0808 | 609 | 0.2651 |
0.0809 | 610 | 0.2365 |
0.0810 | 611 | 0.2613 |
0.0812 | 612 | 0.214 |
0.0813 | 613 | 0.2631 |
0.0814 | 614 | 0.2123 |
0.0816 | 615 | 0.264 |
0.0817 | 616 | 0.2476 |
0.0818 | 617 | 0.1832 |
0.0820 | 618 | 0.2502 |
0.0821 | 619 | 0.2154 |
0.0822 | 620 | 0.1827 |
0.0823 | 621 | 0.1986 |
0.0825 | 622 | 0.1941 |
0.0826 | 623 | 0.3169 |
0.0827 | 624 | 0.2879 |
0.0829 | 625 | 0.1893 |
0.0830 | 626 | 0.2422 |
0.0831 | 627 | 0.1879 |
0.0833 | 628 | 0.1934 |
0.0834 | 629 | 0.2704 |
0.0835 | 630 | 0.2647 |
0.0837 | 631 | 0.172 |
0.0838 | 632 | 0.2293 |
0.0839 | 633 | 0.2379 |
0.0841 | 634 | 0.2218 |
0.0842 | 635 | 0.1942 |
0.0843 | 636 | 0.2721 |
0.0845 | 637 | 0.225 |
0.0846 | 638 | 0.1792 |
0.0847 | 639 | 0.2242 |
0.0849 | 640 | 0.2294 |
0.0850 | 641 | 0.245 |
0.0851 | 642 | 0.2796 |
0.0853 | 643 | 0.2202 |
0.0854 | 644 | 0.2604 |
0.0855 | 645 | 0.2502 |
0.0857 | 646 | 0.2551 |
0.0858 | 647 | 0.2426 |
0.0859 | 648 | 0.2284 |
0.0861 | 649 | 0.2045 |
0.0862 | 650 | 0.2009 |
0.0863 | 651 | 0.1626 |
0.0865 | 652 | 0.1887 |
0.0866 | 653 | 0.2635 |
0.0867 | 654 | 0.2657 |
0.0869 | 655 | 0.2294 |
0.0870 | 656 | 0.2273 |
0.0871 | 657 | 0.2435 |
0.0873 | 658 | 0.2155 |
0.0874 | 659 | 0.2994 |
0.0875 | 660 | 0.2589 |
0.0877 | 661 | 0.2215 |
0.0878 | 662 | 0.2351 |
0.0879 | 663 | 0.2421 |
0.0881 | 664 | 0.2354 |
0.0882 | 665 | 0.2121 |
0.0883 | 666 | 0.2563 |
0.0884 | 667 | 0.1664 |
0.0886 | 668 | 0.2368 |
0.0887 | 669 | 0.2324 |
0.0888 | 670 | 0.1557 |
0.0890 | 671 | 0.2187 |
0.0891 | 672 | 0.2257 |
0.0892 | 673 | 0.2098 |
0.0894 | 674 | 0.2091 |
0.0895 | 675 | 0.1942 |
0.0896 | 676 | 0.2308 |
0.0898 | 677 | 0.2143 |
0.0899 | 678 | 0.1557 |
0.0900 | 679 | 0.2221 |
0.0902 | 680 | 0.2849 |
0.0903 | 681 | 0.2145 |
0.0904 | 682 | 0.2729 |
0.0906 | 683 | 0.1669 |
0.0907 | 684 | 0.2307 |
0.0908 | 685 | 0.2233 |
0.0910 | 686 | 0.2401 |
0.0911 | 687 | 0.1956 |
0.0912 | 688 | 0.1902 |
0.0914 | 689 | 0.2097 |
0.0915 | 690 | 0.2348 |
0.0916 | 691 | 0.2459 |
0.0918 | 692 | 0.2128 |
0.0919 | 693 | 0.1694 |
0.0920 | 694 | 0.2565 |
0.0922 | 695 | 0.2284 |
0.0923 | 696 | 0.2436 |
0.0924 | 697 | 0.2159 |
0.0926 | 698 | 0.2138 |
0.0927 | 699 | 0.2371 |
0.0928 | 700 | 0.2882 |
0.0930 | 701 | 0.2451 |
0.0931 | 702 | 0.2459 |
0.0932 | 703 | 0.1529 |
0.0934 | 704 | 0.1697 |
0.0935 | 705 | 0.2245 |
0.0936 | 706 | 0.2201 |
0.0938 | 707 | 0.2318 |
0.0939 | 708 | 0.2236 |
0.0940 | 709 | 0.2343 |
0.0942 | 710 | 0.2339 |
0.0943 | 711 | 0.1975 |
0.0944 | 712 | 0.2275 |
0.0945 | 713 | 0.234 |
0.0947 | 714 | 0.259 |
0.0948 | 715 | 0.2044 |
0.0949 | 716 | 0.1714 |
0.0951 | 717 | 0.2841 |
0.0952 | 718 | 0.2509 |
0.0953 | 719 | 0.2107 |
0.0955 | 720 | 0.1995 |
0.0956 | 721 | 0.1877 |
0.0957 | 722 | 0.2648 |
0.0959 | 723 | 0.2381 |
0.0960 | 724 | 0.2349 |
0.0961 | 725 | 0.2148 |
0.0963 | 726 | 0.2292 |
0.0964 | 727 | 0.2327 |
0.0965 | 728 | 0.2198 |
0.0967 | 729 | 0.2125 |
0.0968 | 730 | 0.241 |
0.0969 | 731 | 0.1878 |
0.0971 | 732 | 0.2262 |
0.0972 | 733 | 0.3006 |
0.0973 | 734 | 0.2525 |
0.0975 | 735 | 0.2099 |
0.0976 | 736 | 0.158 |
0.0977 | 737 | 0.2308 |
0.0979 | 738 | 0.2685 |
0.0980 | 739 | 0.2047 |
0.0981 | 740 | 0.1584 |
0.0983 | 741 | 0.2674 |
0.0984 | 742 | 0.2233 |
0.0985 | 743 | 0.2767 |
0.0987 | 744 | 0.2963 |
0.0988 | 745 | 0.203 |
0.0989 | 746 | 0.2725 |
0.0991 | 747 | 0.1873 |
0.0992 | 748 | 0.2225 |
0.0993 | 749 | 0.2706 |
0.0995 | 750 | 0.27 |
0.0996 | 751 | 0.1753 |
0.0997 | 752 | 0.2031 |
0.0999 | 753 | 0.2059 |
0.1000 | 754 | 0.2749 |
0.1001 | 755 | 0.2011 |
0.1003 | 756 | 0.2067 |
0.1004 | 757 | 0.2486 |
0.1005 | 758 | 0.257 |
0.1006 | 759 | 0.236 |
0.1008 | 760 | 0.2361 |
0.1009 | 761 | 0.1818 |
0.1010 | 762 | 0.1799 |
0.1012 | 763 | 0.2408 |
0.1013 | 764 | 0.2526 |
0.1014 | 765 | 0.2234 |
0.1016 | 766 | 0.2055 |
0.1017 | 767 | 0.2068 |
0.1018 | 768 | 0.2621 |
0.1020 | 769 | 0.2182 |
0.1021 | 770 | 0.309 |
0.1022 | 771 | 0.2786 |
0.1024 | 772 | 0.1517 |
0.1025 | 773 | 0.2266 |
0.1026 | 774 | 0.2028 |
0.1028 | 775 | 0.2851 |
0.1029 | 776 | 0.2474 |
0.1030 | 777 | 0.2241 |
0.1032 | 778 | 0.2593 |
0.1033 | 779 | 0.2101 |
0.1034 | 780 | 0.147 |
0.1036 | 781 | 0.231 |
0.1037 | 782 | 0.1734 |
0.1038 | 783 | 0.2107 |
0.1040 | 784 | 0.219 |
0.1041 | 785 | 0.2229 |
0.1042 | 786 | 0.2096 |
0.1044 | 787 | 0.2777 |
0.1045 | 788 | 0.1967 |
0.1046 | 789 | 0.2445 |
0.1048 | 790 | 0.1847 |
0.1049 | 791 | 0.1525 |
0.1050 | 792 | 0.201 |
0.1052 | 793 | 0.181 |
0.1053 | 794 | 0.1737 |
0.1054 | 795 | 0.1893 |
0.1056 | 796 | 0.2084 |
0.1057 | 797 | 0.2367 |
0.1058 | 798 | 0.2266 |
0.1060 | 799 | 0.1858 |
0.1061 | 800 | 0.2138 |
0.1062 | 801 | 0.1704 |
0.1064 | 802 | 0.2377 |
0.1065 | 803 | 0.2107 |
0.1066 | 804 | 0.172 |
0.1067 | 805 | 0.1858 |
0.1069 | 806 | 0.1804 |
0.1070 | 807 | 0.2421 |
0.1071 | 808 | 0.2433 |
0.1073 | 809 | 0.1867 |
0.1074 | 810 | 0.2003 |
0.1075 | 811 | 0.1785 |
0.1077 | 812 | 0.2538 |
0.1078 | 813 | 0.1582 |
0.1079 | 814 | 0.2325 |
0.1081 | 815 | 0.2073 |
0.1082 | 816 | 0.2168 |
0.1083 | 817 | 0.1958 |
0.1085 | 818 | 0.1847 |
0.1086 | 819 | 0.1702 |
0.1087 | 820 | 0.244 |
0.1089 | 821 | 0.2063 |
0.1090 | 822 | 0.1923 |
0.1091 | 823 | 0.2571 |
0.1093 | 824 | 0.2683 |
0.1094 | 825 | 0.2088 |
0.1095 | 826 | 0.3397 |
0.1097 | 827 | 0.2355 |
0.1098 | 828 | 0.2 |
0.1099 | 829 | 0.2657 |
0.1101 | 830 | 0.1738 |
0.1102 | 831 | 0.2237 |
0.1103 | 832 | 0.2023 |
0.1105 | 833 | 0.1805 |
0.1106 | 834 | 0.1801 |
0.1107 | 835 | 0.2095 |
0.1109 | 836 | 0.1901 |
0.1110 | 837 | 0.2139 |
0.1111 | 838 | 0.2157 |
0.1113 | 839 | 0.2403 |
0.1114 | 840 | 0.1356 |
0.1115 | 841 | 0.2247 |
0.1117 | 842 | 0.2338 |
0.1118 | 843 | 0.185 |
0.1119 | 844 | 0.2787 |
0.1121 | 845 | 0.2026 |
0.1122 | 846 | 0.2 |
0.1123 | 847 | 0.2214 |
0.1125 | 848 | 0.1887 |
0.1126 | 849 | 0.2144 |
0.1127 | 850 | 0.2552 |
0.1128 | 851 | 0.2443 |
0.1130 | 852 | 0.1934 |
0.1131 | 853 | 0.1907 |
0.1132 | 854 | 0.2258 |
0.1134 | 855 | 0.212 |
0.1135 | 856 | 0.2151 |
0.1136 | 857 | 0.2173 |
0.1138 | 858 | 0.1976 |
0.1139 | 859 | 0.2427 |
0.1140 | 860 | 0.1984 |
0.1142 | 861 | 0.2138 |
0.1143 | 862 | 0.2225 |
0.1144 | 863 | 0.1992 |
0.1146 | 864 | 0.1738 |
0.1147 | 865 | 0.1853 |
0.1148 | 866 | 0.2464 |
0.1150 | 867 | 0.2278 |
0.1151 | 868 | 0.2248 |
0.1152 | 869 | 0.1515 |
0.1154 | 870 | 0.1649 |
0.1155 | 871 | 0.2059 |
0.1156 | 872 | 0.2325 |
0.1158 | 873 | 0.2582 |
0.1159 | 874 | 0.2337 |
0.1160 | 875 | 0.2171 |
0.1162 | 876 | 0.2003 |
0.1163 | 877 | 0.1839 |
0.1164 | 878 | 0.3144 |
0.1166 | 879 | 0.1853 |
0.1167 | 880 | 0.2039 |
0.1168 | 881 | 0.2692 |
0.1170 | 882 | 0.2438 |
0.1171 | 883 | 0.3044 |
0.1172 | 884 | 0.2862 |
0.1174 | 885 | 0.211 |
0.1175 | 886 | 0.2682 |
0.1176 | 887 | 0.2622 |
0.1178 | 888 | 0.2321 |
0.1179 | 889 | 0.2082 |
0.1180 | 890 | 0.196 |
0.1182 | 891 | 0.2833 |
0.1183 | 892 | 0.202 |
0.1184 | 893 | 0.1902 |
0.1186 | 894 | 0.1899 |
0.1187 | 895 | 0.2158 |
0.1188 | 896 | 0.2342 |
0.1189 | 897 | 0.1907 |
0.1191 | 898 | 0.2876 |
0.1192 | 899 | 0.192 |
0.1193 | 900 | 0.1858 |
0.1195 | 901 | 0.156 |
0.1196 | 902 | 0.2121 |
0.1197 | 903 | 0.2576 |
0.1199 | 904 | 0.2424 |
0.1200 | 905 | 0.1558 |
0.1201 | 906 | 0.246 |
0.1203 | 907 | 0.2339 |
0.1204 | 908 | 0.258 |
0.1205 | 909 | 0.197 |
0.1207 | 910 | 0.212 |
0.1208 | 911 | 0.1962 |
0.1209 | 912 | 0.2636 |
0.1211 | 913 | 0.16 |
0.1212 | 914 | 0.201 |
0.1213 | 915 | 0.237 |
0.1215 | 916 | 0.1827 |
0.1216 | 917 | 0.2384 |
0.1217 | 918 | 0.2102 |
0.1219 | 919 | 0.2366 |
0.1220 | 920 | 0.2186 |
0.1221 | 921 | 0.147 |
0.1223 | 922 | 0.2121 |
0.1224 | 923 | 0.1364 |
0.1225 | 924 | 0.2493 |
0.1227 | 925 | 0.2246 |
0.1228 | 926 | 0.2436 |
0.1229 | 927 | 0.2798 |
0.1231 | 928 | 0.1885 |
0.1232 | 929 | 0.178 |
0.1233 | 930 | 0.2246 |
0.1235 | 931 | 0.3115 |
0.1236 | 932 | 0.2451 |
0.1237 | 933 | 0.1786 |
0.1239 | 934 | 0.159 |
0.1240 | 935 | 0.1896 |
0.1241 | 936 | 0.2422 |
0.1243 | 937 | 0.2497 |
0.1244 | 938 | 0.2339 |
0.1245 | 939 | 0.1685 |
0.1247 | 940 | 0.162 |
0.1248 | 941 | 0.2064 |
0.1249 | 942 | 0.1232 |
0.1250 | 943 | 0.2158 |
0.1252 | 944 | 0.2738 |
0.1253 | 945 | 0.1813 |
0.1254 | 946 | 0.1498 |
0.1256 | 947 | 0.1617 |
0.1257 | 948 | 0.1967 |
0.1258 | 949 | 0.2021 |
0.1260 | 950 | 0.144 |
0.1261 | 951 | 0.2569 |
0.1262 | 952 | 0.2608 |
0.1264 | 953 | 0.1876 |
0.1265 | 954 | 0.1767 |
0.1266 | 955 | 0.1712 |
0.1268 | 956 | 0.2498 |
0.1269 | 957 | 0.2866 |
0.1270 | 958 | 0.1918 |
0.1272 | 959 | 0.2038 |
0.1273 | 960 | 0.1982 |
0.1274 | 961 | 0.2127 |
0.1276 | 962 | 0.2411 |
0.1277 | 963 | 0.2639 |
0.1278 | 964 | 0.2552 |
0.1280 | 965 | 0.2376 |
0.1281 | 966 | 0.2645 |
0.1282 | 967 | 0.1697 |
0.1284 | 968 | 0.1944 |
0.1285 | 969 | 0.1807 |
0.1286 | 970 | 0.2027 |
0.1288 | 971 | 0.219 |
0.1289 | 972 | 0.2317 |
0.1290 | 973 | 0.2104 |
0.1292 | 974 | 0.2191 |
0.1293 | 975 | 0.2081 |
0.1294 | 976 | 0.239 |
0.1296 | 977 | 0.189 |
0.1297 | 978 | 0.1859 |
0.1298 | 979 | 0.2516 |
0.1300 | 980 | 0.217 |
0.1301 | 981 | 0.269 |
0.1302 | 982 | 0.2385 |
0.1304 | 983 | 0.198 |
0.1305 | 984 | 0.2239 |
0.1306 | 985 | 0.2006 |
0.1308 | 986 | 0.3049 |
0.1309 | 987 | 0.1857 |
0.1310 | 988 | 0.2048 |
0.1311 | 989 | 0.2556 |
0.1313 | 990 | 0.1578 |
0.1314 | 991 | 0.2305 |
0.1315 | 992 | 0.2078 |
0.1317 | 993 | 0.2333 |
0.1318 | 994 | 0.1999 |
0.1319 | 995 | 0.2347 |
0.1321 | 996 | 0.2293 |
0.1322 | 997 | 0.1871 |
0.1323 | 998 | 0.1855 |
0.1325 | 999 | 0.1786 |
0.1326 | 1000 | 0.181 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for seongil-dn/e5-large-neg-v0-bs40-lr1e-6-1000
Base model
intfloat/multilingual-e5-large